Skip to main content
Log in

Neuropathological changes in the substantia nigra in schizophrenia but not depression

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia is a chronic, disabling neuropsychiatric disorder characterised by positive, negative and cognitive symptoms. The aetiology is not known, although genetic, imaging and pathological studies have implicated both neurodevelopmental and neurodegenerative processes. The substantia nigra is a basal ganglia nucleus responsible for the production of dopamine and projection of dopaminergic neurons to the striatum. The substantia nigra is implicated in schizophrenia as dopamine has been heavily implicated in the dopamine hypothesis of schizophrenia and the prevalent psychotic symptoms and the monoamine theory of depression, and is a target for the development of new therapies. Studies into the major dopamine delivery pathways in the brain will therefore provide a strong base in improving knowledge of these psychiatric disorders. This post-mortem study examines the cytoarchitecture of dopaminergic neurons of the substantia nigra in schizophrenia (n = 12) and depression (n = 13) compared to matched controls (n = 13). Measures of nucleolar volume, nuclear length and nuclear area were taken in patients with chronic schizophrenia and major depressive disorder against matched controls. Astrocyte density was decreased in schizophrenia compared to controls (p = 0.030), with no change in oligodendrocyte density observed. Significantly increased nuclear cross-sectional area (p = 0.017) and length (p = 0.021), and increased nucleolar volume (p = 0.037) in dopaminergic neurons were observed in schizophrenia patients compared with controls, suggesting nuclear pleomorphic changes. No changes were observed in depression cases compared to control group. These changes may reflect pathological alterations in gene expression, neuronal structure and function in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abi-Dargham A, Rodenhiser J, Printz D et al (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97:8104–8109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Agid O, Mamo D, Ginovart N, Vitcu I, Wilson AA, Zipursky RB, Kapur S (2007) Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response-a double-blind PET study in schizophrenia. Neuropsychopharmacology 32:1209–1215

    Article  CAS  PubMed  Google Scholar 

  3. Anamizu Y, Seichi A, Tsuzuki N, Nakamura K (2006) Age-related changes in histogram pattern of anterior horn cells in human cervical spinal cord. Neuropathology 26:533–539

    Article  PubMed  Google Scholar 

  4. Bachus SE, Hyde TM, Akil M, Weickert CS, Vawter MP, Kleinman JE (1997) Neuropathology of suicide. A review and an approach. Ann N Y Acad Sci 836:201–219

    Article  CAS  PubMed  Google Scholar 

  5. Baquet ZC, Williams D, Brody J, Smeyne RJ (2009) A comparison of model-based (2D) and design-based (3D) stereological methods for estimating cell number in the substantia nigra pars compacta (SNpc) of the C57BL/6 J mouse. Neuroscience 161:1082–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Baumeister AA, Francis JL (2002) Historical development of the dopamine hypothesis of schizophrenia. J Hist Neurosci 11:265–277

    Article  PubMed  Google Scholar 

  7. Berciano MT, Novell M, Villagra NT, Casafont I, Bengoechea R, Val-Bernal JF, Lafarga M (2007) Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons. J Struct Biol 158:410–420

    Article  CAS  PubMed  Google Scholar 

  8. Beskow J, Gotffries CG, Winblad B (1976) Determination of monoamine and monoamine metabolites in the human brain: postmortem studies in a group of suicides and in a control group. Acta Psychiatr Scand 53:7–20

    Article  CAS  PubMed  Google Scholar 

  9. Breier A, Su TP, Saunders R et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Brown R, Colter N, Corsellis JA et al (1986) Postmortem evidence of structural brain changes in schizophrenia. Differences in brain weight, temporal horn area, and parahippocampal gyrus compared with affective disorder. Arch Gen Psychiatry 43:36–42

    Article  CAS  PubMed  Google Scholar 

  11. Bustos G, Abarca J, Campusano J, Bustoc V, Noriega V, Aliaga E (2004) Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Rev 47:126–144

    Article  CAS  PubMed  Google Scholar 

  12. Clausius N, Born C, Grunze H (2009) The relevance of dopamine agonists in the treatment of depression. Neuropsychiatrie 23:15–25

    PubMed  Google Scholar 

  13. D’Haenen HA, Bossuyt A (1994) Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 35:128–132

    Article  PubMed  Google Scholar 

  14. Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    CAS  PubMed  Google Scholar 

  15. Dunlop BW, Nemeroff CB (2007) The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64:327–337

    Article  CAS  PubMed  Google Scholar 

  16. Fleming TM, Scott V, Naskar K, Joe N, Brown CH, Stern JE (2011) State-dependent changes in astrocyte regulation of extrasynaptic NMDA receptor signalling in neurosecretory neurons. J Physiol 589:3929–3941

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Fusar-Poli P, Perez J, Broome M et al (2007) Neurofunctional correlates of vulnerability to psychosis: a systematic review and meta-analysis. Neurosci Biobehav Rev 31:465–484

    Article  PubMed  Google Scholar 

  18. Hajos M, Greenfield SA (1994) Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res 660:216–224

    Article  CAS  PubMed  Google Scholar 

  19. Harrison PJ (1999) The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 122:593–624

    Article  PubMed  Google Scholar 

  20. Hietala J, Syvalahti E, Vilkman H et al (1999) Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 35:41–50

    Article  CAS  PubMed  Google Scholar 

  21. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S (2009) Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des 15:2550–2559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed Central  PubMed  Google Scholar 

  23. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK (2006) The pre-synaptic dopaminergic system before and after the onset of psychosis: initial results from an ongoing [18F]fluoro-dopa PET study. Schizophr Res 86(Suppl 1):S11

    Article  Google Scholar 

  24. Huttunen J, Heinimaa M, Svirskis T et al (2008) Striatal dopamine synthesis in first-degree relatives of patients with schizophrenia. Biol Psychiatry 63:114–117

    Article  CAS  PubMed  Google Scholar 

  25. Jamieson SM, Liu JJ, Connor B, Dragunow M, McKeage MJ (2007) Nucleolar enlargement, nuclear eccentricity and altered cell body immunostaining characteristics of large-sized sensory neurons following treatment of rats with paclitaxel. Neurotoxicology 28:1092–1098

    Article  CAS  PubMed  Google Scholar 

  26. Jentsch JD, Taylor JR, Roth RH (1998) Subchronic phencyclidine administration increases mesolimbic dopaminergic system responsivity and augments stress-and psychostimulant-induced hyperlocomotion. Neuropsychopharmacology 19:105–113

    Article  CAS  PubMed  Google Scholar 

  27. Kasper BS, Taylor DC, Janz D, Kasper EM, Maier M, Williams MR, Crow TJ (2010) Neuropathology of epilepsy and psychosis: the contributions of J.A.N. Corsellis. Brain 133:3795–3805

    Article  PubMed  Google Scholar 

  28. Keck ME, Welt T, Muller MB et al (2002) Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology 43:101–109

    Article  CAS  PubMed  Google Scholar 

  29. Kegeles LS, Abi-Dargham A, Frankle WG et al (2010) Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Arch Gen Psychiatry 67:231–239

    Article  CAS  PubMed  Google Scholar 

  30. Kessler RM, Woodward ND, Riccardi P et al (2009) Dopamine D2 Receptor Levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 65:1024–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kestler LP, Walker E, Vega EM (2001) Dopamine receptors in the brain of schizophrenia patients: a meta-analysis of the findings. Behav Pharmacol 12:355–371

    Article  CAS  PubMed  Google Scholar 

  32. Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA (2002) Dopaminergic abnormalities in amygdaloid nucleus in major depression: a postmortem study. Biol Psychiatry 52:740–748

    Article  CAS  PubMed  Google Scholar 

  33. Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003:138–158

    Article  CAS  PubMed  Google Scholar 

  34. Lawrie SM, Abukmeil SS (1998) Brain abnormality in schizophrenia: a systematic and quantitative review of volumetric magnetic resonance imaging studies. Br J Psychiatry 172:110–120

    Article  CAS  PubMed  Google Scholar 

  35. Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, Langstrom B (1999) Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(β-11C) DOPA and PET. Biol Psychiatry 46:681–688

    Article  CAS  PubMed  Google Scholar 

  36. Lopez Leon S, Croes EA, Sayed-Tabatabaei FA, Claes S, Van Broeckhoven C, van Duijn CM (2005) The dopamine D4 receptor gene 48-base-pair-repeat polymorphism and mood disorders: a meta-analysis. Biol Psychiatry 57:999–1003

    Article  CAS  PubMed  Google Scholar 

  37. Mamah D, Wang L, Barch D, de Erausquin GA, Gado M, Csernansky JG (2007) Structural analysis of the basal ganglia in schizophrenia. Schizophr Res 89:59–71

    Article  PubMed Central  PubMed  Google Scholar 

  38. Martinot M, Bragulat V, Artiges E, Dolle F, Hinnen F, Jouvent R, Martinot J (2001) Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 158:314–316

    Article  CAS  PubMed  Google Scholar 

  39. McIlwain DL, Hoke VB (2005) The role of the cytoskeleton in cell body enlargement, increased nuclear eccentricity and chromatolysis in axotomized spinal motor neurons. BMC Neurosci 6:19

    Article  PubMed Central  PubMed  Google Scholar 

  40. Meyer-Lindenberg A, Miletich RS, Kohn PD, Esposito G et al (2002) Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 5:267–271

    Article  CAS  PubMed  Google Scholar 

  41. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC (2009) Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry 66:811–822

    Article  PubMed Central  PubMed  Google Scholar 

  42. Mitterauer BJ (2011) Possible role of glia in cognitive impairment in schizophrenia. CNS Neurosci Ther 17:333–344

    Article  PubMed  Google Scholar 

  43. Mizrahi R, Agid O, Borlido C, Suridjan I, Rusjan P, Houle S, Remington G, Wilson AA, Kapur S (2011) Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res 131:63–68

    Article  PubMed  Google Scholar 

  44. Mueller HT, Haroutunian V, Davis KL, Meador-Woodruff JH (2004) Expression of the ionotropic glutamate receptor subunits and NMDA receptor-associated intracellular proteins in the substantia nigra in schizophrenia. Brain research. Mol Brain Res 121:60–69

    Article  CAS  PubMed  Google Scholar 

  45. Murray GK, Corlett PR, Clark L et al (2008) Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 239:267–276

    Article  Google Scholar 

  46. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ (1998) Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 55:433–440

    Article  CAS  PubMed  Google Scholar 

  47. Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. PNAS USA 95:13290–13295

    Article  PubMed Central  PubMed  Google Scholar 

  48. Owen R, Owen F, Poulter M, Crow TJ (1984) Dopamine D2 receptors in substantia nigra in schizophrenia. Brain Res 299:152–154

    Article  CAS  PubMed  Google Scholar 

  49. Pakkenberg B (1987) Post-mortem study of chronic schizophrenic brains. Br J Psychiatry 151:744–752

    Article  CAS  PubMed  Google Scholar 

  50. Park SK, Nguyen MD, Fischer A et al (2005) Par-4 links dopamine signaling and depression. Cell 122:275–287

    Article  CAS  PubMed  Google Scholar 

  51. Parsey RV, Oquendo MA, Zea-Ponce Y et al (2001) Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 50:313–322

    Article  CAS  PubMed  Google Scholar 

  52. Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M (2001) Neuronal body size correlates with the number of nucleoli and cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430:250–263

    Article  CAS  PubMed  Google Scholar 

  53. Rajkowska G, Miguel-Hidalgo JJ, Makkos Z, Meltzer H, Overholser J, Stockmeier C (2002) Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 57:127–138. Erratum in: Schizophr Res 2003 60:103

    Google Scholar 

  54. Rajkowska G, Selemon LD, Goldman-Rakic PS (1998) Neuronal and glial somal size in the prefrontal cortex: a post-mortem morphometric study of schizophrenia and Huntington disease. Arc Gen Psychiatry 55:215–224

    Article  CAS  Google Scholar 

  55. Rajkowska G (1997) Morphometric methods for studying the prefrontal cortex in suicide victims and psychiatric patients. Ann N Y Acad Sci 29(836):253–268

    Article  Google Scholar 

  56. Rampello L, Nicoletti G, Raffaele R (1991) Dopaminergic hypothesis for retarded depression: a symptom profile for predicting therapeutical responses. Acta Psychiatr Scand 84:552–554

    Article  CAS  PubMed  Google Scholar 

  57. Rey MJ, Schulz P, Costa C, Dick P, Tissot R (1989) Guidelines for the dosage of neuroleptics. I: chlorpromazine equivalents of orally administered neuroleptics. Int Clin Psychopharmacol 4:95–104

    Article  CAS  PubMed  Google Scholar 

  58. Rothermundt M, Ahn JN, Jörgens S (2009) S100B in schizophrenia: an update. Gen Physiol Biophys 28:F76–F81

    PubMed  Google Scholar 

  59. Schmitt A, Steyskal C, Bernstein HG, Schneider-Axmann T, Parlapani E, Schaeffer EL, Gattaz WF, Bogerts B, Schmitz C, Falkai P (2009) Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathol 117:395–407

    Article  PubMed  Google Scholar 

  60. Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188:1217–1219

    Article  CAS  PubMed  Google Scholar 

  61. Segal D, Schmitz C, Hof PR (2009) Spatial distribution and density of oligodendrocytes in the cingulum bundle are unaltered in schizophrenia. Acta Neuropathol 117:385–394

    Article  PubMed Central  PubMed  Google Scholar 

  62. Selemon LD, Rajkowska G (2002) Two-dimensional versus three-dimensional cell counting correspondence. Biol Psychiatry 51:838–846

    Article  PubMed  Google Scholar 

  63. Smieskova R, Fusar-Poli P, Allen P et al (2009) The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?—a systematic review. Curr Pharm Des 15:2535–2549

    Article  CAS  PubMed  Google Scholar 

  64. Strafella AP, Paus T, Fraraccio M, Dagher A (2003) Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 126:2609–2615

    Article  PubMed  Google Scholar 

  65. Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    Article  CAS  PubMed  Google Scholar 

  66. Swaab DF, Bao AM, Lucassen PJ (2005) The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 4(2):141–194

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka S (2010) Model-based parametric study of frontostriatal abnormalities in schizophrenia patients. BMC Psychiatry 27:10–17

    Google Scholar 

  68. Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208

    Article  CAS  PubMed  Google Scholar 

  69. Thompson PM, Vidal C, Giedd JN et al (2001) Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 98:11650–11655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 73:79–89

    Article  PubMed  Google Scholar 

  71. Toru M, Watanabe S, Shibuya H et al (1988) Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatr Scand 78:121–137

    Article  CAS  PubMed  Google Scholar 

  72. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley neuropathology consortium. Schizophr Res 67:269–275

    Article  PubMed  Google Scholar 

  73. van Berckel BN, Kegeles LS, Waterhouse R et al (2006) Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 31:967–977

    Article  PubMed  Google Scholar 

  74. van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS (2008) Schizophrenia as a progressive brain disease. Eur Psychiatry 23:245–254

    Article  PubMed  Google Scholar 

  75. von Bartheld C (2002) Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases. Histol Histopathol 17:639–648

    Google Scholar 

  76. Vostrikov V, Orlovskaya D, Uranova N (2008) Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J Biol Psychiatry 9:34–42

    Article  PubMed  Google Scholar 

  77. Wang L, Mamah D, Harms MP et al (2008) Progressive deformation of deep brain nuclei and hippocampal-amygdala formation in schizophrenia. Biol Psychiatry 64:1060–1068

    Article  PubMed Central  PubMed  Google Scholar 

  78. Williams MR, Hampton T, Pearce RKB, Hirsch SR, Ansorge O, Thom M, Maier M (2013) Astrocyte decrease in the subgenual cingulate and callosal genu in schizophrenia. Eur Arch Psychiatry clin Neurosci 263:41–52

    Article  PubMed  Google Scholar 

  79. Williams MR, Marsh R, Jain J, Pearce RKB, Hirsch SR, Gentleman S, Thom M, Maier M (2011) Examination of glial and neuronal changes in the Nucleus Basalis in schizophrenia and recurrent depression. Int Clin Psychopharmacol 26:e68

    Article  Google Scholar 

  80. Williams MR, Pearce RKB, Hirsch SR, Ansorge O, Thom M, Maier M (2006) Astrocytes abnormalities differentiate schizophrenia from affective disorders in post-mortem brain. Schizophr Res 81:72

    Google Scholar 

  81. Woodruff PW, McManus IC, David AS (1995) Meta-analysis of corpus callosum size in schizophrenia. J Neurol Neurosurg Psychiatry 58:457–461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64:663–667

    Article  CAS  PubMed  Google Scholar 

  83. Zaborszky L, Vadasz C (2001) The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains. Behav Genet 31:47–59

    Article  CAS  PubMed  Google Scholar 

  84. Zaidel DW, Esiri MM, Harrison PJ (1997) Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 27:703–713

    CAS  Google Scholar 

  85. Zakzanis KK, Hansen KT (1998) Dopamine D2 densities and the schizophrenic brain. Schizophr Res 32:201–206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Steven Gentleman for neuropathological advice and Prof. Tim Crow for original review of the Runwell schizophrenia series. The tissue was obtained from the Corsellis collection, which is supported by the Starr foundation and the West London Mental Health Trust and the research supported by funding from the MRC-UK PET Methodology Programme Grant G1100809/1. This project was conducted under ethical permission granted by the London south west local ethics committee reference WL/02/12 (2002), and amendment WL/02/12/AM01 granted by the Ealing and WLMHT local research ethics committee (2006).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Williams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, M.R., Galvin, K., O’Sullivan, B. et al. Neuropathological changes in the substantia nigra in schizophrenia but not depression. Eur Arch Psychiatry Clin Neurosci 264, 285–296 (2014). https://doi.org/10.1007/s00406-013-0479-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-013-0479-z

Keywords

Navigation