Skip to main content
Log in

Upregulation of chemokine (C–C motif) ligand 20 in adult epidermal keratinocytes in direct current electric fields

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Electric fields (EFs) of around 100 mV/mm are present in normal healing wounds and induce the directional migration of epithelial cells. Reepithelialization during wound healing thus may be controlled in part by this electrical signal. In this study, the early transcriptional response of human epidermal keratinocytes to EFs is examined using microarrays. Increased expression of various chemokines, interleukins, and other inflammatory response genes indicates that EFs stimulate keratinocyte activation and immune stimulatory activity. Gene expression activity further suggests that interleukin 1 is either released or activated in EFs. Expression of the chemokine CCL20 steadily increases at 100 mV/mm over time until around 8 h after exposure. This chemokine is also expressed at field strengths of 300 mV/mm—above the level of endogenous wound fields. The early effects of EFs on epithelial gene expression activity identified in these studies suggest the importance of naturally occurring EFs both in repair mechanisms and for the possibility of controlling these responses therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCL20:

Chemokine (C–C motif) ligand 20

EF:

Electric field

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

HEKa:

Human epidermal keratinocytes

IL:

Interleukin

LIF:

Leukemia inhibitory factor

NFKBIZ:

Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor zeta

PTEN:

Phosphatase and tensin homolog

PIK3C2A:

Phosphoinositide-3-kinase class 2 alpha polypeptide

PI3K-γ:

Phosphoinositol-3-OH-kinase-γ

PLAUR:

Plasminogen activated urokinase receptor

TGF-β:

Transforming growth factor beta

TNF:

Tumor necrosis factor

uPA:

Urokinase-type plasminogen activator

References

  1. Barker A, Jaffe L, Vanable J (1982) The glabrous epidermis of cavies contains a powerful battery. Am J Physiol 242(3):R358–R366

    CAS  PubMed  Google Scholar 

  2. Blasi F, Carmeliet P (2002) uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 3(12):932–943

    Article  CAS  PubMed  Google Scholar 

  3. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F et al (1997) Urokinase-generated plasmin activates matrix metal-loproteinases during aneurysm formation. Nat Genet 17(4):439–444

    Article  CAS  PubMed  Google Scholar 

  4. Chen JD, Lapiere JC, Sauder DN, Peavey C, Woodley DT (1995) Interleukin-1 alpha stimulates keratinocyte migration through an epidermal growth factor/transforming growth factor-alpha-independent pathway. J Invest Dermatol 104(5):729–733

    Article  CAS  PubMed  Google Scholar 

  5. Clark RA (1985) Cutaneous tissue repair: basic biologic considerations. I. J Am Acad Dermatol 13(5 Pt 1):701–725

    Article  CAS  PubMed  Google Scholar 

  6. Clark RA (1993) Basics of cutaneous wound repair. J Dermatol Surg Oncol 19(8):693–706

    CAS  PubMed  Google Scholar 

  7. Fang KS, Farboud B, Nuccitelli R, Isseroff RR (1998) Migration of human keratinocytes in electric fields requires growth factors and extracellular calcium. J Invest Dermatol 111(5):751–756

    Article  CAS  PubMed  Google Scholar 

  8. Fang KS, Ionides E, Oster G, Nuccitelli R, Isseroff RR (1999) Epidermal growth factor receptor relocalization and kinase activity are necessary for directional migration of keratinocytes in DC electric fields. J Cell Sci 112(Pt 12):1967–1978

    CAS  PubMed  Google Scholar 

  9. Foulds IS, Barker AT (1983) Human skin battery potentials and their possible role in wound healing. Br J Dermatol 109(5):515–522

    Article  CAS  PubMed  Google Scholar 

  10. Gaidarov I, Smith ME, Domin J, Keen JH (2001) The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane traffick-ing. Mol Cell 7(2):443–449

    Article  CAS  PubMed  Google Scholar 

  11. Gallucci RM, Sloan DK, Heck JM, Murray AR, O’Dell SJ (2004) Interleukin 6 indirectly induces keratinocyte migration. J Invest Dermatol 122(3):764–772

    Article  CAS  PubMed  Google Scholar 

  12. Grinnell F (1992) Wound repair, keratinocyte activation and integrin modulation. J Cell Sci 101(Pt 1):1–5

    CAS  PubMed  Google Scholar 

  13. Harant H, Eldershaw SA, Lindley IJ (2001) Human macrophage inflammatory protein-3alpha/CCL20/LARC/Exodus/SCYA20 is transcriptionally upregulated by tumor necrosis factor-alpha via a non-standard NF-kappaB site. FEBS Lett 509(3):439–445

    Article  CAS  PubMed  Google Scholar 

  14. Hartner A, Sterzel RB, Reindl N, Hocke GM, Fey GH, Goppelt-Struebe M (1994) Cyto-kine-induced expression of leukemia inhibitory factor in renal mesangial cells. Kidney Int 45(6):1562–1571

    Article  CAS  PubMed  Google Scholar 

  15. Hetier E, Ayala J, Bousseau A, Prochiantz A (1991) Modulation of interleukin-1 and tu-mor necrosis factor expression by beta-adrenergic agonists in mouse ameboid micro-glial cells. Exp Brain Res 86(2):407–413

    Article  CAS  PubMed  Google Scholar 

  16. Jennings J, Chen D, Feldman D (2008) Transcriptional response of dermal fibroblasts in direct current electric fields. Bioelectromagnetics 29(5):394–405

    Article  CAS  PubMed  Google Scholar 

  17. Kelsen SG, Anakwe O, Aksoy MO, Reddy PJ, Dhanasekaran N (1997) IL-1 beta alters beta-adrenergic receptor adenylyl cyclase system function in human airway epithelial cells. Am J Physiol 273(3 Pt 1):L694–L700

    CAS  PubMed  Google Scholar 

  18. Kitajima Y, Aoyama Y, Seishima M (1999) Transmembrane signaling for adhesive regu-lation of desmosomes and hemidesmosomes, and for cell–cell datachment induced by pemphigus IgG in cultured keratinocytes: involvement of protein kinase C. J Investig Dermatol Symp Proc 4(2):137–144

    Article  CAS  PubMed  Google Scholar 

  19. Kitamura H, Kanehira K, Takahiko S, Morimatsu M, Jung B, Akashi S, Saito M (2002) Bacterial Lipopolysaccharide Induces mRNA Expression of an IκB MAIL through Toll-Like Receptor 4. J Vet Med Sci 64(5):419–422

    Article  CAS  PubMed  Google Scholar 

  20. Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strie-ter RM (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258(5089):1798–1801

    Article  CAS  PubMed  Google Scholar 

  21. Kondo S, Sauder DN, Kono T, Galley KA, McKenzie RC (1994) Differential modulation of interleukin-1 alpha (IL-1 alpha) and interleukin-1 beta (IL-1 beta) in human epi-dermal keratinocytes by UVB. Exp Dermatol 3(1):29–39

    Article  CAS  PubMed  Google Scholar 

  22. Kupper TS, Ballard DW, Chua AO, McGuire JS, Flood PM, Horowitz MC, Langdon R, Lightfoot L, Gubler U (1986) Human keratinocytes contain mRNA indistinguishable from monocyte interleukin 1 alpha and beta mRNA. Keratinocyte epidermal cell-derived thymocyte-activating factor is identical to interleukin 1. J Exp Med 164(6):2095–2100

    Article  CAS  PubMed  Google Scholar 

  23. Kupper TS, Chua AO, Flood P, McGuire J, Gubler U (1987) Interleukin 1 gene expression in cultured human keratinocytes is augmented by ultraviolet irradiation. J Clin Invest 80(2):430–436

    Article  CAS  PubMed  Google Scholar 

  24. Maas-Szabowski N, Fusenig NE (1996) Interleukin-1-induced growth factor expression in postmitotic and resting fibroblasts. J Invest Dermatol 107(6):849–855

    Article  CAS  PubMed  Google Scholar 

  25. Michel M, L’Heureux N, Auger FA, Germain L (1997) From newborn to adult: phenotypic and functional properties of skin equivalent and human skin as a function of donor age. J Cell Physiol 171(2):179–189

    Google Scholar 

  26. Muta T, Yamazaki S, Eto A, Motoyama M, Takeshige K (2003) IkappaB-zeta, a new anti-inflammatory nuclear protein induced by lipopolysaccharide, is a negative regulator for nuclear factor-kappaB. J Endotoxin Res 9(3):187–191

    CAS  PubMed  Google Scholar 

  27. Nelson RT, Boyd J, Gladue RP, Paradis T, Thomas R, Cunningham AC, Lira P, Brissette WH, Hayes L, Hames LM et al (2001) Genomic organization of the CC chemokine mip-3alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization. Genomics 73(1):28–37

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate to the neg-ative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109(Pt 1):199–207

    CAS  PubMed  Google Scholar 

  29. Nourshargh S, Larkin SW, Das A, Williams TJ (1995) Interleukin-1-induced leukocyte extravasation across rat mesenteric microvessels is mediated by platelet-activating factor. Blood 85(9):2553–2558

    CAS  PubMed  Google Scholar 

  30. O’Keefe EJ, Payne RE Jr, Russell N, Woodley DT (1985) Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol 85(2):125–130

    Article  PubMed  Google Scholar 

  31. Obedencio GP, Nuccitelli R, Isseroff RR (1999) Involucrin-positive keratinocytes demonstrate decreased migration speed but sustained directional migration in a DC electric field. J Invest Dermatol 113(5):851–855

    Article  CAS  PubMed  Google Scholar 

  32. Palombella VJ, Yamashiro DJ, Maxfield FR, Decker SJ, Vilcek J (1987) Tumor necrosis factor increases the number of epidermal growth factor receptors on human fibrob-lasts. J Biol Chem 262(5):1950–1954

    CAS  PubMed  Google Scholar 

  33. Partridge M, Chantry D, Turner M, Feldmann M (1991) Production of interleukin-1 and interleukin-6 by human keratinocytes and squamous cell carcinoma cell lines. J Invest Dermatol 96(5):771–776

    Article  CAS  PubMed  Google Scholar 

  34. Poo M (1981) In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng 10:245–276

    Article  CAS  PubMed  Google Scholar 

  35. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA, Marinkovich MP, Isseroff RR (2006) beta4 integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol Biol Cell 17(11):4925–4935

    Article  CAS  PubMed  Google Scholar 

  36. Pullar CE, Isseroff RR (2005) Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 118(Pt 9):2023–2034

    Article  CAS  PubMed  Google Scholar 

  37. Pullar CE, Isseroff RR, Nuccitelli R (2001) Cyclic AMP-dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskeleton 50(4):207–217

    Article  CAS  PubMed  Google Scholar 

  38. Rennekampff HO, Hansbrough JF, Kiessig V, Dore C, Sticherling M, Schroder JM (2000) Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 93(1):41–54

    Article  CAS  PubMed  Google Scholar 

  39. Romero LI, Zhang DN, Herron GS, Karasek MA (1997) Interleukin-1 induces major phe-notypic changes in human skin microvascular endothelial cells. J Cell Physiol 173(1):84–92

    Article  CAS  PubMed  Google Scholar 

  40. Rosenkilde MM, Schwartz TW (2004) The chemokine system—a major regulator of an-giogenesis in health and disease. Apmis 112(7–8):481–495

    Article  CAS  PubMed  Google Scholar 

  41. Schmuth M, Neyer S, Rainer C, Grassegger A, Fritsch P, Romani N, Heufler C (2002) Expression of the C–C chemokine MIP-3 alpha/CCL20 in human epidermis with im-paired permeability barrier function. Exp Dermatol 11(2):135–142

    Article  CAS  PubMed  Google Scholar 

  42. Sheridan DM, Isseroff RR, Nuccitelli R (1996) Imposition of a physiologic DC electric field alters the migratory response of human keratinocytes on extracellular matrix molecules. J Invest Dermatol 106(4):642–646

    Article  CAS  PubMed  Google Scholar 

  43. Sticherling M, Hetzel F, Schroder JM, Christophers E (1993) Time- and stimulus-dependent secretion of NAP-1/IL-8 by human fibroblasts and endothelial cells. J Invest Dermatol 101(4):573–576

    Article  CAS  PubMed  Google Scholar 

  44. Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D et al (1995) The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem 270(45):27348–27357

    Article  CAS  PubMed  Google Scholar 

  45. Thelen M (2001) Dancing to the tune of chemokines. Nat Immunol 2(2):129–134

    Article  CAS  PubMed  Google Scholar 

  46. Trollinger DR, Isseroff RR, Nuccitelli R (2002) Calcium channel blockers inhibit galva-notaxis in human keratinocytes. J Cell Physiol 193(1):1–9

    Article  CAS  PubMed  Google Scholar 

  47. van der Poll T, Jansen J, Endert E, Sauerwein HP, van Deventer SJ (1994) Noradrenaline inhibits lipopolysaccharide-induced tumor necrosis factor and interleukin 6 produc-tion in human whole blood. Infect Immun 62(5):2046–2050

    PubMed  Google Scholar 

  48. Villiger PM, Geng Y, Lotz M (1993) Induction of cytokine expression by leukemia inhi-bitory factor. J Clin Invest 91(4):1575–1581

    Article  CAS  PubMed  Google Scholar 

  49. Woodley DT, Bachmann PM, O’Keefe EJ (1988) Laminin inhibits human keratinocyte migration. J Cell Physiol 136(1):140–146

    Article  CAS  PubMed  Google Scholar 

  50. Woodley DT, O’Keefe EJ, Prunieras M (1985) Cutaneous wound healing: a model for cell–matrix interactions. J Am Acad Dermatol 12(2 Pt 2):420–433

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K et al (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430(6996):218–222

    Article  CAS  PubMed  Google Scholar 

  52. Zhao M, Agius-Fernandez A, Forrester JV, McCaig CD (1996) Orientation and directed migration of cultured corneal epithelial cells in small electric fields are serum depen-dent. J Cell Sci 109(Pt 6):1405–1414

    CAS  PubMed  Google Scholar 

  53. Zhao M, Dick A, Forrester JV, McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol Cell 10(4):1259–1276

    CAS  PubMed  Google Scholar 

  54. Zhao M, Pu J, Forrester JV, McCaig CD (2002) Membrane lipids, EGF receptors, and intracellular signals colocalize and are polarized in epithelial cells moving direction-ally in a physiological electric field. Faseb J 16(8):857–859

    CAS  PubMed  Google Scholar 

  55. Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y et al (2006) Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature 442(7101):457–460

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project has been funded in part with US federal funds from the National Cancer Institute, NIH under CA-13148 and from the NCRR, NIH under 1UL1RR025777.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Amber Jennings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, J.A., Chen, D. & Feldman, D.S. Upregulation of chemokine (C–C motif) ligand 20 in adult epidermal keratinocytes in direct current electric fields. Arch Dermatol Res 302, 211–220 (2010). https://doi.org/10.1007/s00403-009-0995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-009-0995-x

Keywords

Navigation