Skip to main content

Advertisement

Log in

Comminuted olecranon fractures: biomechanical testing of locked versus minifragment non-locked plate fixation

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Open reduction and internal fixation has long been accepted as optimal treatment for displaced olecranon fractures based on poor results seen with conservative management. With the presence of comminution, tension-band wiring constructs are contraindicated due to tendency to compress through fragments, thereby shortening the articular segment. Therefore, plate fixation is typically employed. Our hypothesis was that in a comminuted fracture model, 2.7 mm reconstruction plating without locking screws will perform equally to 3.5 mm locked plating in terms of fracture displacement and rotation (shear).

Materials and methods

A three-part comminuted olecranon fracture pattern was created in nine matched pairs of cadaveric specimen using an oscillating saw in standardized, reproducible fashion. Each matched pair was then randomized to receive either 2.7 mm reconstruction plating or 3.5 mm proximal ulna locked plating. Random allocation software was used to assign the 2.7 mm plate construct to either the right or left side of each pair with the contralateral receiving the 3.5 mm plate construct. Specimens were cyclically loaded simulating passive range of motion exercises commonly performed during rehabilitation. Displacement and rotation in relation to the long axis of the ulna were measured through motion capture. Fragment gapping and rotation was quantified following 100 cycles at 10 N and again following 100 cycles at 500 N.

Results

No significant differences were detected between the 2.7 and 3.5 mm plates in fracture rotation or gapping following loads at 10 N (0.5° and 0.7°; 0.6 and 1.2 mm; respectively; p > 0.05) or 500 N (2.3° and 1.6°; 3.8 and 3.1 mm; respectively; p > 0.05) loading. Fragment rotation and gapping were positively correlated within each plate construct (R 2 > 0.445; p < 0.05).

Conclusions

2.7 mm plating is an alternative to 3.5 mm locked plating with decreased plate prominence without significantly sacrificing displacement and rotational control. This is beneficial in fracture patterns where the traditional dorsal plating does not offer optimal screw trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eriksson E, Sahlin O, Sandahl U (1957) Late results of conservative and surgical treatment of fracture of the olecranon. Acta Chir Scand 113(2):153–166

    CAS  PubMed  Google Scholar 

  2. Murphy DF, Greene WB, Dameron TB Jr (1987) Displaced olecranon fractures in adults. clinical evaluation. Clin Orthop Relat Res 224:215–223

    Google Scholar 

  3. Wilkerson JA, Rosenwasser MP (2014) Surgical techniques of olecranon fractures. J Hand Surg 39(8):1606–1614

    Article  Google Scholar 

  4. Macko D, Szabo RM (1985) Complications of tension-band wiring of olecranon fractures. J Bone Jt Surg Am 67(9):1396–1401

    Article  CAS  Google Scholar 

  5. Romero JM, Miran A, Jensen CH (2000) Complications and re-operation rate after tension-band wiring of olecranon fractures. J Orthop Sci Off J Jpn Orthop Assoc 5(4):318–320

    CAS  Google Scholar 

  6. Villanueva P, Osorio F, Commessatti M, Sanchez-Sotelo J (2006) Tension-band wiring for olecranon fractures: analysis of risk factors for failure. J Shoulder Elbow Surg 5(3):351–356

    Article  Google Scholar 

  7. Rouleau DM, Sandman E, van Riet R, Galatz LM (2013) Management of fractures of the proximal ulna. J Am Acad Orthop Surg 21(3):149–160

    PubMed  Google Scholar 

  8. Buijze G, Kloen P (2009) Clinical evaluation of locking compression plate fixation for comminuted olecranon fractures. J Bone Jt Surg Am 91(10):2416–2420

    Article  Google Scholar 

  9. Siebenlist S, Torsiglieri T, Kraus T, Burghardt RD, Stockle U, Lucke M (2010) Comminuted fractures of the proximal ulna—preliminary results with an anatomically preshaped locking compression plate (LCP) system. Injury 41(12):1306–1311

    Article  CAS  PubMed  Google Scholar 

  10. Russell GV Jr, Jarrett CA, Jones CB, Cole PA, Gates J (2005) Management of distal humerus fractures with minifragment fixation. J Orthop Trauma 19(7):474–479

    Article  PubMed  Google Scholar 

  11. Wellman DS, Lazaro LE, Cymerman RM, Axelrad TW, Leu D, Helfet DL, Lorich DG (2015) Treatment of olecranon fractures with 2.4- and 2.7-mm plating techniques. J Orthop Trauma 29(1):36–43

    Article  PubMed  Google Scholar 

  12. Krackow KA, Thomas SC, Jones LC (1986) A new stitch for ligament-tendon fixation. Brief note. J Bone Jt Surg Am 68(5):764–766

    Article  CAS  Google Scholar 

  13. Hutchinson DT, Horwitz DS, Ha G, Thomas CW, Bachus KN (2003) Cyclic loading of olecranon fracture fixation constructs. J Bone Jt Surg Am 85-a(5):831–837

    Article  Google Scholar 

  14. Wu G, van der Helm FC, Veeger HE, Makhsous M, Van Roy P, Anglin C, Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Buchholz B (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech 38(5):981–992

    Article  CAS  PubMed  Google Scholar 

  15. Anderson ML, Larson AN, Merten SM, Steinmann SP (2007) Congruent elbow plate fixation of olecranon fractures. J Orthop Trauma 21(6):386–393

    Article  PubMed  Google Scholar 

  16. Claes L (2011) Biomechanical principles and mechanobiologic aspects of flexible and locked plating. J Orthop Trauma 25(Suppl 1):S4–S7

    Article  PubMed  Google Scholar 

  17. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38(Suppl 1):S3–S10

    Article  PubMed  Google Scholar 

  18. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res Off Publ Orthop Res Soc 21(6):1011–1017

    Article  Google Scholar 

  19. Gordon MJ, Budoff JE, Yeh ML, Luo ZP, Noble PC (2006) Comminuted olecranon fractures: a comparison of plating methods. J Shoulder Elbow Surg 15(1):94–99

    Article  PubMed  Google Scholar 

  20. Beingessner DM, Nork SE, Agel J, Viskontas D (2011) A fragment-specific approach to type IID Monteggia elbow fracture-dislocations. J Orthop Trauma 25(7):414–419

    Article  PubMed  Google Scholar 

  21. Morwood MP, Ruch DS, Leversedge FJ, Mithani SK, Kamal RN, Richard MJ (2015) Olecranon fractures with sagittal splits treated with dual fixation. J Hand Surg 40(4):711–715

    Article  Google Scholar 

  22. Argintar E, Martin BD, Singer A, Hsieh AH, Edwards S (2012) A biomechanical comparison of multidirectional nail and locking plate fixation in unstable olecranon fractures. J Shoulder Elbow Surg 21(10):1398–1405

    Article  PubMed  Google Scholar 

  23. Edwards SG, Martin BD, Fu RH, Gill JM, Nezhad MK, Orr JA, Ferrucci AM, Fraser J, Singer A, Hsieh AH (2012) Quantifying and comparing torsional strains after olecranon plating. Injury 43(6):712–717

    Article  PubMed  Google Scholar 

  24. Hammond J, Ruland R, Hogan C, Rose D, Belkoff S (2012) Biomechanical analysis of a transverse olecranon fracture model using tension band wiring. J Hand Surg 37(12):2506–2511

    Article  Google Scholar 

  25. Nowak TE, Burkhart KJ, Andres T, Dietz SO, Klitscher D, Mueller LP, Rommens PM (2013) Locking-plate osteosynthesis versus intramedullary nailing for fixation of olecranon fractures: a biomechanical study. Int Orthop 37(5):899–903

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sadri H, Stern R, Singh M, Linke B, Hoffmeyer P, Schwieger K (2011) Transverse fractures of the olecranon: a biomechanical comparison of three fixation techniques. Arch Orthop Trauma Surg 131(1):131–138

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Helfet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellman, D.S., Tucker, S.M., Baxter, J.R. et al. Comminuted olecranon fractures: biomechanical testing of locked versus minifragment non-locked plate fixation. Arch Orthop Trauma Surg 137, 1173–1179 (2017). https://doi.org/10.1007/s00402-017-2735-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-017-2735-6

Keywords

Navigation