Skip to main content

Advertisement

Log in

Axonopathy is a compounding factor in the pathogenesis of Krabbe disease

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Loss-of-function of the lysosomal enzyme galactosyl-ceramidase causes the accumulation of the lipid raft-associated sphingolipid psychosine, the disruption of postnatal myelination, neurodegeneration and early death in most cases of infantile Krabbe disease. This work presents a first study towards understanding the progression of axonal defects in this disease using the Twitcher mutant mouse. Axonal swellings were detected in axons within the mutant spinal cord as early as 1 week after birth. As the disease progressed, more axonopathic profiles were found in other regions of the nervous system, including peripheral nerves and various brain areas. Isolated mutant neurons recapitulated axonal and neuronal defects in the absence of mutant myelinating glia, suggesting an autonomous neuronal defect. Psychosine was sufficient to induce axonal defects and cell death in cultures of acutely isolated neurons. Interestingly, axonopathy in young Twitcher mice occured in the absence of demyelination and of neuronal apoptosis. Neuronal damage occurred at later stages, when mutant mice were moribund and demyelinated. Altogether, these findings suggest a progressive dying-back neuronal dysfunction in Twitcher mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aicardi J (1993) The inherited leukodystrophies: a clinical overview. J Inherit Metab Dis 16:733–743

    Article  PubMed  CAS  Google Scholar 

  2. Baker RH, Trautmann JC, Younge BR, Nelson KD, Zimmerman D (1990) Late juvenile-onset Krabbe’s disease. Ophthalmology 97:1176–1180

    PubMed  CAS  Google Scholar 

  3. Banker G, Goslin K (1998) Culturing nerve cells. The MIT Press, Cambridge

    Google Scholar 

  4. Benn SC, Woolf CJ (2004) Adult neuron survival strategies—slamming on the brakes. Nat Rev Neurosci 5:686–700

    Article  PubMed  CAS  Google Scholar 

  5. Boespflug-Tanguy O, Labauge P, Fogli A, Vaurs-Barriere C (2008) Genes involved in leukodystrophies: a glance at glial functions. Curr Neurol Neurosci Rep 8:217–229

    Article  PubMed  CAS  Google Scholar 

  6. Bongarzone ER, Foster LM, Byravan S et al (1996) Conditionally immortalized neural cell lines: potential models for the study of neural cell function. Methods 10:489–500

    Article  PubMed  CAS  Google Scholar 

  7. Cheng CL, Povlishock JT (1988) The effect of traumatic brain injury on the visual system: a morphologic characterization of reactive axonal change. J Neurotrauma 5:47–70

    Article  PubMed  CAS  Google Scholar 

  8. Cleland WW, Kennedy EP (1960) The enzymatic synthesis of psychosine. J Biol Chem 235:45–51

    PubMed  CAS  Google Scholar 

  9. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898

    Article  PubMed  CAS  Google Scholar 

  10. Coleman MP, Perry VH (2002) Axon pathology in neurological disease: a neglected therapeutic target. Trends Neurosci 25:532–537

    Article  PubMed  CAS  Google Scholar 

  11. Costello DJ, Eichler AF, Eichler FS (2009) Leukodystrophies: classification, diagnosis, and treatment. Neurologist 15:319–328

    Article  PubMed  Google Scholar 

  12. Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21

    Article  PubMed  CAS  Google Scholar 

  13. de Waegh SM, Lee VM, Brady ST (1992) Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell 68:451–463

    Article  PubMed  Google Scholar 

  14. Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA (2010) Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci 30:9166–9171

    PubMed  CAS  Google Scholar 

  15. Dolcetta D, Amadio S, Guerrini U et al (2005) Myelin deterioration in Twitcher mice: motor evoked potentials and magnetic resonance imaging as in vivo monitoring tools. J Neurosci Res 81:597–604

    Article  PubMed  CAS  Google Scholar 

  16. Dolcetta D, Perani L, Givogri MI et al (2006) Design and optimization of lentiviral vectors for transfer of GALC expression in Twitcher brain. J Gene Med 8:962–971

    Article  PubMed  CAS  Google Scholar 

  17. Dunn HG, Lake BD, Dolman CL, Wilson J (1969) The neuropathy of Krabbe’s infantile cerebral sclerosis: globoid cell leucodystrophy. Brain 92:329–344

    Article  PubMed  CAS  Google Scholar 

  18. Escolar ML, Poe MD, Provenzale JM et al (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081

    Article  PubMed  CAS  Google Scholar 

  19. Feng G, Mellor RH, Bernstein M et al (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41–51

    Article  PubMed  CAS  Google Scholar 

  20. Galbiati F, Basso V, Cantuti L et al (2007) Autonomic denervation of lymphoid organs leads to epigenetic immune atrophy in a mouse model of Krabbe disease. J Neurosci 27:13730–13738

    Article  PubMed  CAS  Google Scholar 

  21. Galbiati F, Givogri MI, Cantuti L et al (2009) Combined hematopoietic and lentiviral gene-transfer therapies in newborn Twitcher mice reveal contemporaneous neurodegeneration and demyelination in Krabbe disease. J Neurosci Res 87:1748–1759

    Article  PubMed  CAS  Google Scholar 

  22. Galvin JE, Uryu K, Lee VM, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. Proc Natl Acad Sci USA 96:13450–13455

    Article  PubMed  CAS  Google Scholar 

  23. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  24. Gu Y, Gu C (2010) Dynamics of Kv1 channel transport in axons. PLoS One 5:e11931

    Article  PubMed  Google Scholar 

  25. Igisu H, Suzuki K (1984) Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science 224:753–755

    Article  PubMed  CAS  Google Scholar 

  26. Jacobs JM, Scaravilli F, De Aranda FT (1982) The pathogenesis of globoid cell leucodystrophy in peripheral nerve of the mouse mutant twitcher. J Neurol Sci 55:285–304

    Article  PubMed  CAS  Google Scholar 

  27. Jatana M, Giri S, Singh AK (2002) Apoptotic positive cells in Krabbe brain and induction of apoptosis in rat C6 glial cells by psychosine. Neurosci Lett 330:183–187

    Article  PubMed  CAS  Google Scholar 

  28. Kagitani-Shimono K, Mohri I, Yagi T, Taniike M, Suzuki K (2008) Peripheral neuropathy in the twitcher mouse: accumulation of extracellular matrix in the endoneurium and aberrant expression of ion channels. Acta Neuropathol 115:577–587

    Article  PubMed  CAS  Google Scholar 

  29. Kanazawa T, Nakamura S, Momoi M et al (2000) Inhibition of cytokinesis by a lipid metabolite, psychosine. J Cell Biol 149:943–950

    Article  PubMed  CAS  Google Scholar 

  30. Karnes HE, Kaiser CL, Durham D (2009) Deafferentation-induced caspase-3 activation and DNA fragmentation in chick cochlear nucleus neurons. Neuroscience 159:804–818

    Article  PubMed  CAS  Google Scholar 

  31. Krabbe K (1916) A new familial, infantile form of diffuse brain sclerosis. Brain 39:74–114

    Article  Google Scholar 

  32. Krijnse-Locker J, Parton RG, Fuller SD, Griffiths G, Dotti CG (1995) The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons. Mol Biol Cell 6:1315–1332

    PubMed  CAS  Google Scholar 

  33. Krivit W, Lockman LA, Watkins PA, Hirsch J, Shapiro EG (1995) The future for treatment by bone marrow transplantation for adrenoleukodystrophy, metachromatic leukodystrophy, globoid cell leukodystrophy and Hurler syndrome. J Inherit Metab Dis 18:398–412

    Article  PubMed  CAS  Google Scholar 

  34. Krivit W, Shapiro EG, Peters C et al (1998) Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med 338:1119–1126

    Article  PubMed  CAS  Google Scholar 

  35. Krivit W, Sung JH, Shapiro EG, Lockman LA (1995) Microglia: the effector cell for reconstitution of the central nervous system following bone marrow transplantation for lysosomal and peroxisomal storage diseases. Cell Transplant 4:385–392

    Article  PubMed  CAS  Google Scholar 

  36. Kurtz HJ, Fletcher TF (1970) The peripheral neuropathy of canine globoid-cell leukodystrophy (Krabbe-type). Acta Neuropathol 16:226–232

    Article  PubMed  CAS  Google Scholar 

  37. Nagara H, Kobayashi T, Suzuki K, Suzuki K (1982) The twitcher mouse: normal pattern of early myelination in the spinal cord. Brain Res 244:289–294

    Article  PubMed  CAS  Google Scholar 

  38. Ohara S, Ukita Y, Ninomiya H, Ohno K (2004) Axonal dystrophy of dorsal root ganglion sensory neurons in a mouse model of Niemann–Pick disease type C. Exp Neurol 187:289–298

    Article  PubMed  CAS  Google Scholar 

  39. Olmstead CE (1987) Neurological and neurobehavioral development of the mutant ‘twitcher’ mouse. Behav Brain Res 25:143–153

    Article  PubMed  CAS  Google Scholar 

  40. Sagot Y, Dubois-Dauphin M, Tan SA et al (1995) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 15:7727–7733

    PubMed  CAS  Google Scholar 

  41. Schlaepfer WW, Prensky AL (1972) Quantitative and qualitative study of sural nerve biopsies in Krabbe’s disease. Acta Neuropathol 20:55–66

    Article  PubMed  CAS  Google Scholar 

  42. Schnorf H, Gitzelmann R, Bosshard NU, Spycher M, Waespe W (1995) Early and severe sensory loss in three adult siblings with hexosaminidase A and B deficiency (Sandhoff disease). J Neurol Neurosurg Psychiatry 59:520–523

    Article  PubMed  CAS  Google Scholar 

  43. Sourander P, Olsson Y (1968) Peripheral neuropathy in globoid cell leucodystrophy (morbus Krabbe). Acta Neuropathol 11:69–81

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki K (1998) Twenty five years of the “psychosine hypothesis”: a personal perspective of its history and present status. Neurochem Res 23:251–259

    Article  PubMed  CAS  Google Scholar 

  45. Suzuki K, Suzuki K (1990) Myelin pathology in the twitcher mouse. Ann NY Acad Sci 605:313–324

    Article  PubMed  CAS  Google Scholar 

  46. Tanaka K, Webster HD (1993) Effects of psychosine (galactosylsphingosine) on the survival and the fine structure of cultured Schwann cells. J Neuropathol Exp Neurol 52:490–498

    Article  PubMed  CAS  Google Scholar 

  47. Taniike M, Mohri I, Eguchi N et al (1999) An apoptotic depletion of oligodendrocytes in the twitcher, a murine model of globoid cell leukodystrophy. J Neuropathol Exp Neurol 58:644–653

    Article  PubMed  CAS  Google Scholar 

  48. Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    Article  PubMed  CAS  Google Scholar 

  49. van der Voorn JP, Kamphorst W, van der Knaap MS, Powers JM (2004) The leukoencephalopathy of infantile GM1 gangliosidosis: oligodendrocytic loss and axonal dysfunction. Acta Neuropathol (Berl) 107:539–545

    Article  Google Scholar 

  50. Vance JE, Campenot RB, Vance DE (2000) The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochim Biophys Acta 1486:84–96

    PubMed  CAS  Google Scholar 

  51. Vance JE, Pan D, Campenot RB, Bussiere M, Vance DE (1994) Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J Neurochem 62:329–337

    Article  PubMed  CAS  Google Scholar 

  52. Wenger DA, Rafi MA, Luzi P, Datto J, Costantino-Ceccarini E (2000) Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab 70:1–9

    Article  PubMed  CAS  Google Scholar 

  53. White AB, Galbiati F, Givogri MI et al (2011) Persistence of psychosine in brain lipid rafts is a limiting factor in the therapeutic recovery of a mouse model for Krabbe disease. J Neurosci Res 89:352–364

    Article  PubMed  CAS  Google Scholar 

  54. White AB, Givogri MI, Lopez-Rosas A et al (2009) Psychosine accumulates in membrane microdomains in the brain of krabbe patients, disrupting the raft architecture. J Neurosci 29:6068–6077

    Article  PubMed  CAS  Google Scholar 

  55. Whitmore AV, Lindsten T, Raff MC, Thompson CB (2003) The proapoptotic proteins Bax and Bak are not involved in Wallerian degeneration. Cell Death Differ 10:260–261

    Article  PubMed  CAS  Google Scholar 

  56. Wijsman JH, Jonker RR, Keijzer R, van de Velde CJ, Cornelisse CJ, van Dierendonck JH (1993) A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA. J Histochem Cytochem 41:7–12

    Article  PubMed  CAS  Google Scholar 

  57. Zaka M, Wenger DA (2004) Psychosine-induced apoptosis in a mouse oligodendrocyte progenitor cell line is mediated by caspase activation. Neurosci Lett 358:205–209

    Article  PubMed  CAS  Google Scholar 

  58. Zalewska T, Kanje M, Edstrom A (1986) A calcium-activated neutral protease in the frog nervous system which degrades rapidly transported axonal proteins. Brain Res 381:58–62

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Scott Brady, Gerardo Morfini and Gustavo Pigino for discussions and the anonymous reviewers for their comments to improve the quality of this study. The authors dedicate this work to the memory of Nestore Cantuti Castelvetri. This study was partially funded by grants from NIH (RNS065808A), the Morton Cure paralysis foundation and the Board of Trustees at the University of Illinois to E.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Roque Bongarzone.

Additional information

L. Cantuti Castelvetri and M.I. Givogri contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 3036 kb)

Supplementary material 2 (TIFF 1929 kb)

Supplementary material 3 (TIFF 7654 kb)

Supplementary material 4 (TIFF 3025 kb)

Supplementary material 5 (MOV 756 kb)

Supplementary material 6 (MOV 1376 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castelvetri, L.C., Givogri, M.I., Zhu, H. et al. Axonopathy is a compounding factor in the pathogenesis of Krabbe disease. Acta Neuropathol 122, 35–48 (2011). https://doi.org/10.1007/s00401-011-0814-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-011-0814-2

Keywords

Navigation