Skip to main content

Advertisement

Log in

Peripheral neuropathy in the twitcher mouse: accumulation of extracellular matrix in the endoneurium and aberrant expression of ion channels

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Globoid cell leukodystrophy (GLD; Krabbe’s disease), caused by a genetic galactosylceramidase deficiency, affects both the central and peripheral nervous systems (CNS and PNS). Allogenic hematopoietic stem-cell transplantation (HSCT) has been beneficial for clinical improvement of this disease. However, recent reports by Siddiqi et al. suggested that none of their transplanted patients achieved complete normalization of their peripheral nerve function, despite the well-documented remyelination of the CNS and PNS in the treated patients. We hypothesized that the PNS dysfunction in GLD is due to altered Schwann cell–axon interactions, resulting in structural abnormalities of the node of Ranvier and aberrant expression of ion channels caused by demyelination and that the persistence of this altered interaction is responsible for the dysfunction of the PNS after HSCT. Since there has not been any investigation of the Schwann cell–axonal relationship in twitcher mice, an authentic model of GLD, we first investigated structural abnormalities, focusing on the node of Ranvier in untreated twitcher mice, and compared the results with those obtained after receiving bone marrow transplantation (BMT). As expected, we found numerous supernumerary Schwann cells that formed structurally abnormal nodes of Ranvier. Similar findings, though at somewhat variable extent, were detected in mice treated with BMT. Activated supernumerary Schwann cells expressed GFAP immunoreactivity and generated Alcian blue-positive extracellular matrix (ECM) in the endoneurial space. The processes of these supernumerary Schwann cells often covered and obliterated the nodal regions. Furthermore, the distribution of Na+ channel immunoreactivity was diffuse without the concentration at the nodes of Ranvier as seen in wild-type mice. Neither K+ channels nor Neurexin IV/ Caspr/ Paranoidin (NCP-1) were detected in the twi/twi sciatic nerve. The results of our study suggest the importance of normalization of the Schwann cell–axon relationship for the functional recovery of peripheral nerves, when one considers therapeutic strategies for PNS pathology in GLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bajaj NP, Waldman A, Orrell R, Wood NW, Bhatia KP (2002) Familial adult onset of Krabbe’s disease resembling hereditary spastic paraplegia with normal neuroimaging. J Neurol Neurosurg Psychiatr 72:635–638

    Article  PubMed  CAS  Google Scholar 

  2. Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W, St Martin M, Li J, Einheber S, Chesler M, Rosenbluth J, Salzer JL, Bellen HJ (2001) Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30:369–383

    Article  PubMed  CAS  Google Scholar 

  3. Carroll SL, Miller ML, Frohnert PW, Kim SS, Corbett JA (1997) Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J Neurosci 17:1642–1659

    PubMed  CAS  Google Scholar 

  4. Devaux JJ, Scherer SS (2005) Altered ion channels in an animal model of Charcot-Marie-Tooth disease type IA. J Neurosci 25:1470–1480

    Article  PubMed  CAS  Google Scholar 

  5. Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M, Morse R, Krivit W, Kurtzberg J (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med 352:2069–2081

    Article  PubMed  CAS  Google Scholar 

  6. Hoogerbrugge PM, Poorthuis BJ, Romme AE, van de Kamp JJ, Wagemaker Gvan Bekkum DW (1988) Effect of bone marrow transplantation on enzyme levels and clinical course in the neurologically affected twitcher mouse. J Clin Invest 58:1790–1794

    Article  Google Scholar 

  7. Ichioka T, Kishimoto Y, Brennan S, Santos GW, Yeager AM (1987) Hematopoietic cell transplantation in murine globoid cell leukodystrophy (the twitcher mouse): effects on levels of galactosylceramidase, psychosine, and galactocerebrosides. Proc Natl Acad Sci USA 84:4259–4263

    Article  PubMed  CAS  Google Scholar 

  8. Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671–682

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi S, Chiu FC, Katayama M, Sacchi RS, Suzuki K, Suzuki K (1986) Expression of glial fibrillary acidic protein in the CNS and PNS of murine globoid cell leukodystrophy, the twitcher. Am J Pathol 125:227–243

    PubMed  CAS  Google Scholar 

  10. Kobayashi S, Katayama M, Satoh J, Suzuki K, Suzuki K (1988) The twitcher mouse. An alteration of the unmyelinated fibers in the PNS. Am J Pathol 239:308–319

    Google Scholar 

  11. Kolodny EH, Raghavan S, Krivit W (1991) Late-onset Krabbe disease (globoid cell leukodystrophy): clinical and biochemical features of 15 cases. Dev Neurosci 13:232–239

    Article  PubMed  CAS  Google Scholar 

  12. Komiyama A, Suzuki K (1994) Progressive dysfunction of twitcher Schwann cells is evaluated better in vitro than in vivo. Brain Res 637:106–113

    Article  PubMed  CAS  Google Scholar 

  13. Kondo A, Hoogerbrugge PM, Suzuki K, Poorthuis BJ, Van Bekkum DW, Suzuki K (1988) Pathology of the peripheral nerve in the twitcher mouse following bone marrow transplantation. Brain Res 460:178–183

    Article  PubMed  CAS  Google Scholar 

  14. Krekoski CA, Neubauer D, Zuo J, Muir D (2001) Axonal regeneration into acellular nerve grafts is enhanced by degradation of chondroitin sulfate proteoglycan. J Neurosci 21:6206–6213

    PubMed  CAS  Google Scholar 

  15. Lee WC, Courtenay A, Troendle FJ, Stallings-Mann ML, Dickey CA, DeLucia MW, Dickson DW, Eckman CB (2005) Enzyme replacement therapy results in substantial improvements in early clinical phenotype in a mouse model of globoid cell leukodystrophy. FASEB J 84:1549–1551

    Google Scholar 

  16. Maat-Schieman ML, Rozemuller AJ, van Duinen SG, Haan J, Eikelenboom P, Roos RA (1991) Microglia in diffuse plaques in hereditary cerebral hemorrhage with amyloidosis (Dutch). An immunohistochemical study. J Neuropathol Exp Neurol 101:483–491

    Google Scholar 

  17. Matsumoto R, Oka N, Nagahama Y, Akiguchi I, Kimura J (1996) Peripheral neuropathy in late-onset Krabbe’s disease: histochemical and ultrastructural findings. Acta Neuropathol (Berl) 92:635–639

    Article  CAS  Google Scholar 

  18. McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM (2005) Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements—initial experience. Radiology 236:221–230

    Article  PubMed  Google Scholar 

  19. Moser HW (2006) Peripheral nerve involvement in Krabbe disease: a guide to therapy selection and evaluation. Neurology 67:201–202

    Article  PubMed  Google Scholar 

  20. Nakai Y, Okumura A, Takada H, Negoro T, Watanabe K, Hattori N, Sobue G (2001) Inflammatory pathological changes in a 2-year-old boy with Charcot-Marie-Tooth disease. Brain Dev 23:258–260

    Article  PubMed  CAS  Google Scholar 

  21. Powell HC, Knobler RL, Myers RR (1983) Peripheral neuropathy in the twitcher mutant. A new experimental model of endoneurial edema. Lab Invest 49:19–25

    PubMed  CAS  Google Scholar 

  22. Sabatelli M, Quaranta L, Madia F, Lippi G, Conte A, Lo Monaco M, Di Trapani G, Rafi MA, Wenger DA, Vaccaro AM, Tonali P (2002) Peripheral neuropathy with hypomyelinating features in adult-onset Krabbe’s disease. Neuromuscul Disord 12:386–391

    Article  PubMed  CAS  Google Scholar 

  23. Sakai N, Inui K, Tatsumi N, Fukushima H, Nishigaki T, Taniike M, Nishimoto J, Tsukamoto H, Yanagihara I, Ozono K, Okada S (1996) Molecular cloning and expression of cDNA for murine galactocerebrosidase and mutation analysis of the twitcher mouse, a model of Krabbe’s disease. J Neurochem 66:1118–1124

    Article  PubMed  CAS  Google Scholar 

  24. Scherer SS, Salzer J (1996) Axon–Schwann cell interactions during peripheral nerve degeneration and regeneration. In: Jessen K, Richardson WD (eds) Glia cell development. Bios Scientific, Oxford, pp 165–196

    Google Scholar 

  25. Schlaepfer WW, Prensky AL (1972) Quantitative and qualitative study of sural nerve biopsies in Krabbe’s disease. Acta Neuropathol (Berl) 20:55–66

    Article  CAS  Google Scholar 

  26. Siddiqi ZA, Sanders DB, Massey JM (2006) Peripheral neuropathy in Krabbe disease: electrodiagnostic findings. Neurology 67:263–267

    Article  PubMed  Google Scholar 

  27. Siddiqi ZA, Sanders DB, Massey JM (2006) Peripheral neuropathy in Krabbe disease: effect of hematopoietic stem cell transplantation. Neurology 67:268–272

    Article  PubMed  Google Scholar 

  28. Suzuki K (2003) Globoid cell leukodystrophy (Krabbe’s disease): update. J Child Neurol 44:595–603

    Article  Google Scholar 

  29. Suzuki K, Hoogerbrugge PM, Poorthuis BJ, Bekkum DW, Suzuki K (1988) The twitcher mouse. Central nervous system pathology after bone marrow transplantation. Lab Invest 239:302–309

    Google Scholar 

  30. Suzuki K, Suzuki K (2002) Lysosomal diseases. In: Lantos P, Graham DI (eds) Greenfield’s neuropathology. 7th edn. Arnold pub Ltd, London, pp 658–735

    Google Scholar 

  31. Suzuki K, Taniike M (1995) Murine model of genetic demyelinating disease: the twitcher mouse. Microsc Res Tech 5:204–214

    Article  Google Scholar 

  32. Taniike M, Mohri I, Eguchi N, Irikura D, Urade Y, Okada S, Suzuki K (1999) An apoptotic depletion of oligodendrocytes in the twitcher, a murine model of globoid cell leukodystrophy. J Neuropathol Exp Neurol 58:644–653

    Article  PubMed  CAS  Google Scholar 

  33. Taniike M, Suzuki K (1994) Spacio-temporal progression of demyelination in twitcher mouse: with clinico-pathological correlation. Acta Neuropathol (Berl) 88:228–236

    Article  CAS  Google Scholar 

  34. Tona A, Perides G, Rahemtulla F, Dahl D (1993) Extracellular matrix in regenerating rat sciatic nerve: a comparative study on the localization of laminin, hyaluronic acid, and chondroitin sulfate proteoglycans, including versican. J Histochem Cytochem 41:593–599

    PubMed  CAS  Google Scholar 

  35. Toyoshima E, Yeager AM, Brennan S, Santos GW, Moser HW, Mayer RF (1986) Nerve conduction studies in the twitcher mouse (murine globoid cell leukodystrophy). J Neurol Sci 74:307–318

    Article  PubMed  CAS  Google Scholar 

  36. Ulzheimer JC, Peles E, Levinson SR, Martini R (2004) Alterd expresssion of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants. Mol Cell Neurosci 25(1):83–94

    Article  PubMed  CAS  Google Scholar 

  37. Watanabe E, Hiyama TY, Kodama R, Noda M (2002) NaX sodium channel is expressed in non-myelinating Schwann cells and alveolar type II cells in mice. Neurosci Lett 330:109–113

    Article  PubMed  CAS  Google Scholar 

  38. Wenger D, Suzuki K, Suzuki Y, Suzuki K (2001) Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe disease). In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited diseases. 8th edn. McGraw-Hill, NY, pp 3669–3694

    Google Scholar 

  39. Yagi T, Matsuda J, Tominaga K, Suzuki K, Suzuki K (2005) Hematopoietic cell transplantation ameliorates clinical phenotype and progression of the CNS pathology in the mouse model of late onset Krabbe disease. J Neuropathol Exp Neurol 64:565–575

    PubMed  Google Scholar 

  40. Yagi T, McMahon EJ, Takikita S, Mohri I, Matsushima GK, Suzuki K (2004) Fate of donor hematopoietic cells in demyelinating mutant mouse, twitcher, following transplantation of GFP+ bone marrow cells. Neurobiol Dis 16:98–109

    Article  PubMed  Google Scholar 

  41. Yeager AM, Brennan S, Tiffany C, Moser HW, Santos GW (1984) Prolonged survival and remyelination after hematopoietic cell transplantation in the twitcher mouse. Science 225:1052–1054

    Article  PubMed  CAS  Google Scholar 

  42. Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. J Neurobiol 34:41–54

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Clarita Langaman for assisting in the electron microscopy. This work was supported by United States Public Health Service Grants NS-24453 and HD-03110 (K.S.); Ministry of Education, Culture, Sports, Science, and Technology of Japan Grants 18790715 (K.K.S.), 09670806 (M.T.); Osaka Medical Research Foundation for Incurable Diseases (M.T.); and by a research grant from Japan Foundation for Applied Enzymology (I.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuriko Kagitani-Shimono.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagitani-Shimono, K., Mohri, I., Yagi, T. et al. Peripheral neuropathy in the twitcher mouse: accumulation of extracellular matrix in the endoneurium and aberrant expression of ion channels. Acta Neuropathol 115, 577–587 (2008). https://doi.org/10.1007/s00401-007-0333-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0333-3

Keywords

Navigation