Skip to main content

Advertisement

Log in

Koch’s postulates and infectious proteins

  • Hypothesis Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Koch’s postulates were formulated in the late nineteenth century as guidelines for establishing that microbes cause specific diseases. Because the rules were developed for living agents—particularly bacteria—their applicability to inanimate pathogens such as viruses and infectious proteins has been problematic. The unorthodox mechanism by which prion diseases are transmitted, involving specific physicochemical characteristics of the protein as well as susceptibility traits of the host, has made these disorders refractory to analysis within the context of the original Koch’s postulates. In addition, evidence is accumulating that other proteopathies, such as AA amyloidosis, apolipoprotein AII amyloidosis, and cerebral Aβ amyloidosis, can be induced in vulnerable recipients by cognate proteinaceous agents. In light of the salient differences in the mode of disease-transmission by microbes and proteins, we propose modifications of Koch’s postulates that will specifically accommodate presumed infectious proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguzzi A, Polymenidou M (2004) Mammalian prion biology: one century of evolving concepts. Cell 116:313–327

    Article  PubMed  CAS  Google Scholar 

  2. Brock TD (1999) Robert Koch: a life in medicine and bacteriology. American Society of Microbiology Press, Washington

    Google Scholar 

  3. Carrell RW, Lomas DA (2002) Alpha1-antitrypsin deficiency—a model for conformational diseases. N Engl J Med 346:45–53

    Article  PubMed  CAS  Google Scholar 

  4. Castilla J, Saa P, Hetz C, Soto C (2005) In vitro generation of infectious scrapie prions. Cell 121:195–206

    Article  PubMed  CAS  Google Scholar 

  5. Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  6. Chesebro B (2003) Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 66:1–20

    Article  PubMed  CAS  Google Scholar 

  7. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M (2005) Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science 308:1420–1421

    Article  CAS  Google Scholar 

  8. Chien P, Weissman JS, DePace AH (2004) Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 73:617–656

    Article  PubMed  CAS  Google Scholar 

  9. Dobson CM (2002) Getting out of shape. Nature 418:729–730

    Article  PubMed  CAS  Google Scholar 

  10. Dobson CM (2005) Structural biology: prying into prions. Nature 435:747–749

    Article  PubMed  CAS  Google Scholar 

  11. Dzwolak W, Grudzielanek S, Smirnovas V, Ravindra R, Nicolini C, Jansen R, Loksztejn A, Porowski S, Winter R (2005) Ethanol-perturbed amyloidogenic self-assembly of insulin: looking for origins of amyloid strains. Biochemistry 44:8948–8958

    Article  PubMed  CAS  Google Scholar 

  12. Evans AS (1991) Causation and disease: effect of technology on postulates of causation. Yale J Biol Med 64:513–528

    PubMed  CAS  Google Scholar 

  13. Evans AS (1976) Causation and disease: the Henle-Koch postulates revisited. Yale J Biol Med 49:175–195

    PubMed  CAS  Google Scholar 

  14. Falkow S (2004) Molecular Koch’s postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat Rev Microbiol 2:67–72

    Article  PubMed  CAS  Google Scholar 

  15. Fu X, Korenaga T, Fu L, Xing Y, Guo Z, Matsushita T, Hosokawa M, Naiki H, Baba S, Kawata Y, Ikeda S, Ishihara T, Mori M, Higuchi K (2004) Induction of AApoAII amyloidosis by various heterogeneous amyloid fibrils. FEBS Lett 563:179–184

    Article  PubMed  CAS  Google Scholar 

  16. Gajdusek DC (1994) Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol Neurobiol 8:1–13

    Article  PubMed  CAS  Google Scholar 

  17. Hardy J (2005) Expression of normal sequence pathogenic proteins for neurodegeneration contributes to disease risk: “Permissive templating” as a general disease mechanism of neurodegeneration. Biochem Soc Trans 33:578–581

    Article  PubMed  CAS  Google Scholar 

  18. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  PubMed  CAS  Google Scholar 

  19. Heikenwalder M, Zeller N, Seeger H, Prinz M, Klohn PC, Schwarz P, Ruddle NH, Weissmann C, Aguzzi A (2005) Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307:1107–1110

    Article  PubMed  CAS  Google Scholar 

  20. Jones EM, Surewicz WK (2005) Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell 121:63–72

    Article  PubMed  CAS  Google Scholar 

  21. Jones EM, Surewicz K, Surewicz WK (2006) Role of N-terminal familial mutations in prion protein fibrillization and prion amyloid propagation in vitro. J Biol Chem 281:8190–8196

    Article  PubMed  CAS  Google Scholar 

  22. Kakizuka A (1998) Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet 14:396–402

    Article  PubMed  CAS  Google Scholar 

  23. Krishnan R, Lindquist SL (2005) Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772

    Article  PubMed  CAS  Google Scholar 

  24. Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB (2004) Synthetic mammalian prions. Science 305:673–676

    Article  PubMed  CAS  Google Scholar 

  25. Legname G, Nguyen HO, Baskakov IV, Cohen FE, DeArmond SJ, Prusiner SB (2005) Strain-specified characteristics of mouse synthetic prions. Proc Natl Acad Sci USA 102:2168–2173

    Article  PubMed  CAS  Google Scholar 

  26. Loeffler F (1884) Untersuchungen über die Bedeutung der Mikroorganismen für die Entstehung der Diptherie beim Menschen, bei der Taube und beim Kalbe. Mitth. a.d. kaiserl. Gesundheitsampte Ii, pp 421–499

  27. Lundmark K, Westermark GT, Olsen A, Westermark P (2005) Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci USA 102:6098–6102

    Article  PubMed  CAS  Google Scholar 

  28. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778

    Article  PubMed  CAS  Google Scholar 

  29. O’Nuallain B, Williams AD, Westermark P, Wetzel R (2004) Seeding specificity in amyloid growth induced by heterologous fibrils. J Biol Chem 279:17490–17490

    Article  PubMed  CAS  Google Scholar 

  30. Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R (2005) Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307:262–265

    Article  PubMed  CAS  Google Scholar 

  31. Prusiner SB (1995) The prion diseases. Sci Am 272:48–51

    Article  PubMed  CAS  Google Scholar 

  32. Prusiner SB (2001) Shattuck lecture—neurodegenerative diseases and prions. N Engl J Med 344:1516–1526

    Article  PubMed  CAS  Google Scholar 

  33. Prusiner SB, Safar J, Cohen FE, DeArmond SJ (1999) The prion diseases. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Lippincott Williams and Wilkins, Philadelphia, pp 161–179

    Google Scholar 

  34. Ritter C, Maddelein ML, Siemer AB, Luhrs T, Ernst M, Meier BH, Saupe SJ, Riek R (2005) Correlation of structural elements and infectivity of the HET-s prion. Nature 435:844–848

    Article  PubMed  CAS  Google Scholar 

  35. Sigurdsson EM, Wisniewski T, Frangione B (2002) Infectivity of amyloid diseases. Trends Mol Med 8:411–413

    Article  PubMed  CAS  Google Scholar 

  36. Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B (2005) The most infectious prion protein particles. Nature 437:257–261

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka M, Chien P, Yonekura K, Weissman JS (2005) Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62

    Article  PubMed  CAS  Google Scholar 

  38. Unterberger U, Voigtlander T, Budka H (2005) Pathogenesis of prion diseases. Acta Neuropath 109:32–48

    Article  PubMed  CAS  Google Scholar 

  39. Van Everbroeck B, Pals P, Martin JJ, Cras P (2002) Transmissible spongiform encephalopathies: the story of a pathogenic protein. Peptides 23:1351–1359

    Article  PubMed  Google Scholar 

  40. Walker LC, LeVine H (2000) The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21:83–95

    Article  PubMed  CAS  Google Scholar 

  41. Walker LC, LeVine H III (2002) Proteopathy: the next therapeutic frontier? Curr Opin Investig Drugs 3:782–787

    PubMed  CAS  Google Scholar 

  42. Walker LC, LeVine H, Mattson MP, Jucker M (2006) Inducible proteopathies. TINS (in press)

  43. Weissman C (2004) The state of the prion. Nat Rev Microbiol 2:861–871

    Article  CAS  Google Scholar 

  44. Weissmann C (2005) Birth of a prion: spontaneous generation revisited. Cell 122:165–168

    Article  PubMed  CAS  Google Scholar 

  45. Xing Y, Nakamura A, Korenaga T, Guo Z, Yao J, Fu X, Matsushita T, Kogishi K, Hosokawa M, Kametani F, Mori M, Higuchi K (2002) Induction of protein conformational change in mouse senile amyloidosis. J Biol Chem 277:164–169

    Article  Google Scholar 

  46. Yamaguchi K, Takahashi S, Kawai T, Naiki H, Goto Y (2005) Seeding-dependent propagation and maturation of amyloid fibril conformation. J Mol Biol 352:952–960

    Article  PubMed  CAS  Google Scholar 

  47. Zou WQ, Gambetti P (2005) From microbes to prions: the final proof of the prion hypothesis. Cell 121:155–157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ingo Autenrieth, John Hardy, Jens Pahnke, Rebecca Rosen, Margaret Walker and Rolf Warzok for helpful discussions. This work was supported by grants from the Woodruff Foundation, NIH (RR-00165), by the Sanders-Brown Center on Aging and Chandler Medical Center of the University of Kentucky, and by the Alzheimer’s Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lary Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, L., LeVine, H. & Jucker, M. Koch’s postulates and infectious proteins. Acta Neuropathol 112, 1–4 (2006). https://doi.org/10.1007/s00401-006-0072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-006-0072-x

Keywords

Navigation