Skip to main content

Advertisement

Log in

Absence of detectable alterations in the putative tumor suppressor gene BTRC in cerebellar medulloblastomas and cutaneous basal cell carcinomas

  • Express Communication
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

The sonic hedgehog signal transduction pathway is aberrantly activated in the majority of cutaneous basal cell carcinomas and a subset of cerebellar medulloblastomas. The latter tumors may also show activation of the wingless (Wnt) signaling pathway. In Drosophila, the F-box/WD40-repeat containing protein Slimb has been shown to function as an intracellular negative regulator of both pathways. The BTRC gene (β-transducin repeat-containing protein) is a human homolog of Slimb that is located at 10q24.3, a chromosome region frequently deleted in medulloblastomas. Here, we report on the mutational analysis of BTRC in 91 human tumors, including 66 primitive neuroectodermal tumors (PNETs) of the central nervous system (62 medulloblastomas and 4 supratentorial PNETs) and 25 cutaneous basal cell carcinomas (BCCs). These analyses revealed no tumor-associated BTRC mutations. BTRC transcripts were expressed in non-neoplastic brain tissue, normal skin, as well as in all PNETs and BCCs analyzed by real-time reverse transcription-PCR. Two novel BTRC transcript variants were expressed at higher levels in non-neoplastic brain tissue than in normal skin and the investigated tumors. Taken together, our results indicate that PNETs and BCCs neither show mutations nor loss of mRNA expression of BTRC. Therefore, BTRC alteration does not appear to be involved in the pathogenesis of these neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Ballarino M, Marchioni M, Carnevali F (2002) The Xenopus laevis β-TrCP gene: genomic organization, alternative splicing, 5' and 3' region characterization and comparison of its structure with that of human beta TrCP genes. Biochim Biophys Acta 1577:81–92

    Article  CAS  PubMed  Google Scholar 

  2. Chiaur DS, Murthy S, Cenciarelli C, Parks W, Loda M, Inghirami G, Demetrick D, Pagano M (2000) Five human genes encoding F-box proteins: chromosome mapping and analysis in human tumors. Cytogenet Cell Genet 88:255–258

    Article  CAS  PubMed  Google Scholar 

  3. Gerstein AV, Almeida TA, Zhao G, Chess E, Shih IeM, Buhler K, Pienta K, Rubin MA, Vessella R, Papadopoulos N (2002) APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34:9–16

    Article  CAS  PubMed  Google Scholar 

  4. Huang H, Mahler-Araujo BM, Sankila A, Chimelli L, Yonekawa Y, Kleihues P, Ohgaki H. (2000) APC mutations in sporadic medulloblastomas. Am J Pathol 156:433–437

    Google Scholar 

  5. Ichimura K, Schmidt EE, Goike HM, Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16 INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13:1065–1072

    CAS  PubMed  Google Scholar 

  6. Kalian MR, Stahle-Backdahl M, Leffell DJ, Glynn M, Zaphiropoulos PG, Pressman C, Unden AB, Dean M, Brash DE, Bale AE, Toftgard R (1996) The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 14:78–81

    CAS  PubMed  Google Scholar 

  7. Koch A, Waha A, Tonn JC, Sorensen N, Berthold F, Wolter M, Reifenberger J, Hartmann W, Friedl W, Reifenberger G, Wiestler OD, Pietsch T (2001) Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93:445–449

    Google Scholar 

  8. Liu C, Kato Y, Zhang Z, Do VM, Yankner BA, He X (1999) β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc Natl Acad Sci USA 96:6273–6278

    CAS  PubMed  Google Scholar 

  9. Maniatis T (1999) A ubiquitin ligase complex essential for the NF-κB, Wnt/Wingless, and Hedgehog signaling pathways. Genes Dev 13:505–510

    CAS  PubMed  Google Scholar 

  10. Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (1998) A novel human WD protein, h-β-TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif. Mol Cell 1:565–574

    CAS  PubMed  Google Scholar 

  11. Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, Deimling A von, Poustka A (1997) DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat Genet 17:32–39

    CAS  PubMed  Google Scholar 

  12. Pietsch T, Waha A, Koch A, Kraus J, Albrecht S, Tonn J, Sorensen N, Berthold F, Henk B, Schmandt N, Wolf HK, Deimling A von, Wainwright B, Chenevix-Trench G, Wiestler OD, Wicking C (1997) Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57:2085–2088

    CAS  PubMed  Google Scholar 

  13. Reardon DA, Michalkiewicz E, Boyett JM, Sublett JE, Entrekin RE, Ragsdale ST, Valentine MB, Behm FG, Li H, Heideman RL, Kun LE, Shapiro DN, Look AT (1997) Extensive genomic abnormalities in childhood medulloblastoma by comparative genomic hybridization. Cancer Res 57:4042–4047

    CAS  PubMed  Google Scholar 

  14. Reifenberger J, Wolter M, Weber RG, Megahed M, Ruzicka T, Lichter P, Reifenberger G (1998) Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–1803

    CAS  PubMed  Google Scholar 

  15. Reifenberger J, Knobbe CB, Wolter M, Blaschke B, Schulte KW, Pietsch T, Ruzicka T, Reifenberger G (2002) Molecular genetic analysis of malignant melanomas for aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT, and BTRC. Int J Cancer 100:549–556

    Article  CAS  PubMed  Google Scholar 

  16. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 9.17–9.19

    Google Scholar 

  17. Smyth I, Narang MA, Evans T, Heimann C, Nakamura Y, Chenevix-Trench G, Pietsch T, Wicking C, Wainwright BJ (1999) Isolation and characterization of human patched 2 (PTCH2), a putative tumour suppressor gene inbasal cell carcinoma and medulloblastoma on chromosome 1p32. Hum Mol Genet 8:291–297

    Article  CAS  PubMed  Google Scholar 

  18. Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/β-TrCP. Genes Dev 13:284–294

    CAS  PubMed  Google Scholar 

  19. Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (2000) Homodimer of two F-box proteins β-TrCP1 or β-TrCP2 binds to IkappaBalpha for signal-dependent ubiquitination. J Biol Chem 275:2877–2884

    CAS  PubMed  Google Scholar 

  20. Taylor MD, Liu L, Raffel C, Hui C, Mainprize TG, Zhang X, Agatep R, Chiappa S, Gao L, Lowrance A, Hao A, Goldstein AM, Stavrou T, Scherer S, Dura WT, Wainwright B, Squire JA, Rutka JT, HoggD (2002) Mutations in SUFU predispose to medulloblastoma. Nat Genet 31:306–310

    Article  CAS  PubMed  Google Scholar 

  21. Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCF/β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev 13:270–283

    Article  CAS  PubMed  Google Scholar 

  22. Wolter M, Reifenberger J, Sommer C, Ruzicka T, Reifenberger G (1997) Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 57:2581–2585

    CAS  PubMed  Google Scholar 

  23. Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, Andersen JS, Mann M, Mercurio F, Ben-Neriah Y (1998) Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Reifenberger.

Additional information

M. W. and C. S. contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolter, M., Scharwächter, C., Reifenberger, J. et al. Absence of detectable alterations in the putative tumor suppressor gene BTRC in cerebellar medulloblastomas and cutaneous basal cell carcinomas. Acta Neuropathol 106, 287–290 (2003). https://doi.org/10.1007/s00401-003-0745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-003-0745-7

Keywords

Navigation