Skip to main content
Log in

Non Linear Rheology for Long Chain Branching characterization, comparison of two methodologies : Fourier Transform Rheology and Relaxation.

  • Original paper
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this study we compare three rheological ways for Long Chain Branching (LCB) characterization of a broad variety of linear and branched polyethylene compounds. One method is based on dynamical spectrometry in the linear domain and uses the van Gurp Palmen plot. The two other methods are both based on non linear rheology (Fourier Transform Rheology (FTR) and chain orientation/relaxation experiments). FTR consists in the Fourier analysis of the shear stress signal due to large oscillatory shear strains. In the present work we focus on the third and the fifth harmonics of the shear stress response. Chain orientation/relaxation experiment consists in the analysis of the polymer relaxation after a large step strain obtained by squeeze flow. In this method, relaxation is measured by dynamical spectrometry and is characterized by two relaxation times related to LCB. All methods distinguish clearly the group of linear polyethylene from the group of branched polyethylene. However, FTR and Chain orientation/relaxation experiments show a better sensitivity than the van Gurp Palmen plot. Non linear experiments seem suitable to distinguish long branched polyethylene between themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Baird D., Bortner M., Doerpinghaus P. (2000) Rheological properties of linear and slightly branched metallocene-catalysed LLDPE. XIIIth International Congress on Rheology, UK, Cambridge, 1:228–230

  • Blackwell R.J., Harlen O.G., McLeish T.C.B. (2001) Theoretical linear and non linear rheology of symmetric treelike polymer melts. Macromolecules 34:2579–2596

    Article  CAS  Google Scholar 

  • Chai C.K., Creissel J., Randrianantoandro H. (1999) Flow induced birefringence of linear and long chain-branched metallocene polyethelene melts subject to steady start-up flow. Polymer 40:4431–4436

    Article  CAS  Google Scholar 

  • Chavanne S. (1996) Etude des harmoniques du couple obtenu à partir d’un cisaillement oscillant de grande amplitude. Observation du comportement de deux EPDM. Rapport de DEA, Ecole d’Application des Hauts Polymères (EAHP), Strasbourg

  • Fujimoto T., Narukawa H., Nagasawa M. (1970) Viscoelastic Properties of Comb-Shaped Polystyrenes. Macromolecules 3: 57–64

    CAS  Google Scholar 

  • Garcia-Franco C.A., Srinivas S., Lohse D.J., Brant P. (2001) Similarities between Gelation and Long Chain Branching Viscoelastic Behavior. Macromolecules (Communication) 34:3115–3117

    Google Scholar 

  • Groves D.J, McLeish T.C.B., Blackwell R.J. (2000) Linear and nonlinear rheology of some model branched polymers. XIIIth International Congress on Rheology, UK, Cambridge, 1:95–97

  • Hadjichristidis N., Xenidou M., Iatrou H., Pitsikalis M., Poulos Y., Avgeropoulos A., Sioula S., Paraskeva S., Velis G., Lohse D.J., Schulz D.N., Fetters L.J., Wright P.J., Mendelson R.A., Garcia-Franco C.A., Sun T., Ruff C.J. (2000) Well-Defined, Model Long Chain Branched Polyethylene. 1. Synthesis and Characterization. Macromolecules 33 : 2424–2436

    Article  CAS  Google Scholar 

  • Heinrich M., Pyckhout-Hintzen W., Allgaier J., Richter D., Straube E., Read D.J., McLeish T.C.B., Groves D.J., Blackwell R.J., Wiedenmann A. (2002) Arm Relaxation in Deformed H-Polymers in Elongational Flow by SANS. Macromolecules 35: 6650–6664

    Article  CAS  Google Scholar 

  • Kimura S., Osaki K., Kurata M. (1981) Stress relaxation of polybutadiene at large deformation. Measurements of stress and birefringence in shear and elongation. J. Polym. Sci.: Polym. Phys. Ed. 19:151–163

    Google Scholar 

  • Lohse D.J., Milner S.T., Fetters L.J., Xenidou M., Hadjichristidis N., Mendelson R.A., Garcia-Franco C.A., Lyon M.K. (2002) Well-Defined, Model Long Chain Branched Polyethylene. 2. Melt Rheological Behavior. Macromolecules 33:2424–2436

    Google Scholar 

  • MacSporran W.C., Spiers R.P. (1982) The dynamic performance of the Weissenberg rheogoniometer II Large amplitude oscillatory shearing – Fundamental response. Rheol. Acta. 21:184–200.

    Google Scholar 

  • MacSporran W.C., Spiers R.P. (1984) The dynamic performance of the Weissenberg rheogoniometer III Large amplitude oscillatory shearing – harmonic analysis. Rheol. Acta. 23:90–96

    Google Scholar 

  • Malmberg A., Kokko E., Lehmus P., Löfgren B., Seppälä J.V. (1998) Long-Chain Branched Polyethene Polymerized by Metallocene Catalysts Et[Ind]2ZrCl2/MAO and Et[IndH4]2ZrCl2/MAO. Macromolecules. 31:8448 – 8454

  • Malmberg A., Gabriel C., Löfgren B., Steffl T. (2000) Long chain branching in ethene polymerisation with metallocene catalysts. XIIIth International Congress on Rheology, UK, Cambridge, 1:174–176

  • McLeish T.C.B. (1988) Molecular rheology of H-polymers. Macromolecules 21:1062–1070

    CAS  Google Scholar 

  • McLeish T.C.B., Allgaier J., Bick D.K., Bishko G., Biswas P., Blackwell R., Blottiere B., Clarke N., Gibbs B., Groves D.J., Hakiki A., Heenan R.K., Johnson J.M., Kant R., Read D.J., Young R.N. (1999) Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering. Macromolecules 32: 6734–6758

    Article  CAS  Google Scholar 

  • Pang S., Rudin A. (1991) SEC assessment of long chain branch frequency in polyethylene. Polym. Mater. Sci. Eng. 65:95–96

    Google Scholar 

  • Read D.J., McLeish T.C.B. (2001) Molecular rheology and statistics of long chain branched metallocene catalysed polyolefins. Macromolecules 34:1928–1945

    Article  CAS  Google Scholar 

  • Roovers J. (1984) Melt rheology of H-shaped polystyrenes. Macromolecules 17:1196–1200

    CAS  Google Scholar 

  • Schedenig T., Schausberger A. (2000) Determination of long chain branching by rheology. XIIIth International Congress on Rheology, UK, Cambridge, 1:263–265

  • Trinkle S., Friedrich C. (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheologica Acta 40:322–328

    Article  CAS  Google Scholar 

  • Trinkle S., Walter P., Friedrich C. (2002) Van Gurp-Palmen Plot II—classification of long chain branched polymers by their topology. Rheologica Acta 41:103–113

    Article  CAS  Google Scholar 

  • Van Gurp M., Palmen J. (1998) Time temperature superposition for polymeric blends. Rheol. Bull. 67:5-8

    Google Scholar 

  • Vega J.F., Fernandez M., Santamaria A., Muñoz-Escalona A., Lafuente P. (1999) Rheological criteria to characterize metallocene catalized polyethylenes. Macromol. Chem. Phys. 200:2257–2268

    Google Scholar 

  • Wilhelm M., Maring D., Spiess H.W. (1998) Fourier-transform rheology. Rheol. Acta. 37:399–405

    Google Scholar 

  • Wilhelm M., Reinheimer P., Ortseifer M. (1999) High sensitivity Fourier-transform rheology. Rheol. Acta. 38:349–356

    Google Scholar 

  • Wilhelm M. (2002) Fourier-transform rheology. Macromol. Mater. Eng. 287: 83–105

    Google Scholar 

  • Wood-Adams P.M., Dealy J.M., DeGroot W.A., Redwine D.O. (2000) Effect of Molecular Structure on the Linear Viscoelastic Behavior of Polyethylene. Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  • Yan D., Wang W.J., Zhu S. (1999) Effect of long chain branching on rheological properties of metallocene polyethylene Polymer 40:1737–1744

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the research laboratory of Feluy (Belgium) of Total Elf Fina for the PE samples and SEC experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Schlatter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, G., Schlatter, G. & Muller, R. Non Linear Rheology for Long Chain Branching characterization, comparison of two methodologies : Fourier Transform Rheology and Relaxation.. Rheol Acta 44, 174–187 (2004). https://doi.org/10.1007/s00397-004-0394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0394-3

Keywords

Navigation