Skip to main content
Log in

Graft copolymers via combination of cationic polymerization and atom transfer radical polymerization and their phase separation into spherical/worm-like nanostructures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized via the combination of cationic polymerization and atom transfer radical polymerization (ATRP). The process involves first, the preparation of poly(p-chloromethyl styrene) (PCMS-CH2Cl) macroinitiator without any cross-linking or side reactions through pendant benzyl chloride (−CH2Cl) functionality by cationic polymerization using a simple FeCl3-based initiating system at 25 °C. The as-synthesized PCMS-CH2Cl, without any transformation, is then used as the macroinitiator to graft PMMA and PBzMA branches by ATRP to produce PCMS-g-PMMA and PCMS-g-PBzMA graft copolymers of varying compositions with controlled molecular weight and moderately narrow polydispersities (M w/M n ≤ 1.32). The resulting PCMS21 -g-PMMA232 graft copolymer in thin film form phase separates into spherical morphology with an average diameter of 170 ± 72 nm. Whereas the PCMS21 -g-PBzMA156 graft copolymer gives worm-like nanostructures with an average length of 94 nm and width of 31 nm due to phase separation as visualized through atomic force microscopy. On the other hand, the phase-separated morphology is not very well-defined for other graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains. This approach represents a rapid and convenient route to prepare unique spherical/worm-like polymer nanostructures.

Well-defined poly(p-chloromethyl styrene)-graft-poly(methyl methacrylate) (PCMS-g-PMMA) and poly(p-chloromethyl styrene)-graft-poly(benzyl methacrylate) (PCMS-g-PBzMA) graft copolymers with asymmetric branches are synthesized by the combination of living cationic polymerization and atom transfer radical polymerization (ATRP). The resulting PCMS21 -g-PMMA232 and PCMS21 -g-PBzMA156 graft copolymers phase separate into nanostructured spherical and worm-like morphologies, respectively, in thin film form. The phase-separated morphology is not very well-defined for graft copolymers (PCMS113 -g-PMMA227 and PCMS113 -g-PBzMA154) thin films containing longer PCMS chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sawamoto M (1991) Ionic polymerization and block and graft polymers. Int J Polym Mater 15(3–4):197–206

    Article  Google Scholar 

  2. Miyata T, Takagi T, Uragami T (1996) Microphase separation in graft copolymer membranes with pendant oligodimethylsiloxanes and their permselectivity for aqueous ethanol solutions. Macromolecules 29(24):7787–7794

    Article  CAS  Google Scholar 

  3. Ryan AJ (2002) Designer polymer blends. Nat Mater 1:8–10

    Article  CAS  Google Scholar 

  4. Miao Z-M, Cheng S-X, Zhang X-Z, Zhuo R-X (2006) Study on drug release behaviors of poly-α, β-[N-(2-hydroxyethyl)-l-aspartamide]-g-poly(ε-caprolactone) nano- and microparticles. Biomacromolecules 7(6):2020–2026

    Article  CAS  Google Scholar 

  5. Bolton J, Bailey TS, Rzayev J (2011) Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. Nano Lett 11(3):998–1001

    Article  CAS  Google Scholar 

  6. Sek D, Be K (1997) Investigations of graft copolymer compatibilizers for blends of polyethylene and liquid crystalline polyester: 1. FT IR study. Polymer 38(12):2925–2931

    Article  CAS  Google Scholar 

  7. Eisenbach CD, Heinemann T (1995) Thermoplastic graft copolymer elastomers with chain-folding or bifurcated side chains. Macromol Chem Phys 196(8):2669–2686

    Article  CAS  Google Scholar 

  8. Jiang X, Du X, Zhang L, Cheng Z (2013) A bifunctional diblock copolymer from consecutive RAFT polymerizations and its functionalization. Macromol Chem Phys 214(6):654–663

    Article  CAS  Google Scholar 

  9. Lu J, Liang H, Li A, Cheng Q (2004) Synthesis of block and graft copolymers of β-pinene and styrene by transformation of living cationic polymerization to atom transfer radical polymerization. Eur Polym J 40(2):397–402

    Article  CAS  Google Scholar 

  10. Li Q-Y, Wu Y-X, Ma W-Y, Xu R-W, Wu G-Y, Yang W-T (2010) Synthesis of graft copolymers with polyisobutylene branch chains. Chin J Polym Sci 28(3):449–456

    Article  Google Scholar 

  11. Sugihara S, Yamashita K, Matsuzuka K, Ikeda I, Maeda Y (2011) Transformation of living cationic polymerization of vinyl ethers to RAFT polymerization mediated by a carboxylic RAFT agent. Macromolecules 45(2):794–804

    Article  Google Scholar 

  12. Wang S, Cheng Z, Zhu J, Zhang Z, Zhu X (2007) Synthesis of amphiphilic and thermosensitive graft copolymers with fluorescence P(St-co-(p-CMS))-g-PNIPAAM by combination of NMP and RAFT methods. J Polym Sci A Polym Chem 45(22):5318–5328

    Article  CAS  Google Scholar 

  13. Gaynor SG, Edelman S, Matyjaszewski K (1996) Synthesis of branched and hyperbranched polystyrenes. Macromolecules 29(3):1079–1081

    Article  CAS  Google Scholar 

  14. Matyjaszewski K, Gaynor SG (1997) Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules 30(23):7042–7049

    Article  CAS  Google Scholar 

  15. Weimer MW, Fréchet JMJ, Gitsov I (1998) Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization: highly branched vs. linear poly[4-(chloromethyl)styrene] by metal-catalyzed “living” radical polymerization. J Polym Sci A Polym Chem 36(6):955–970

    Article  CAS  Google Scholar 

  16. Kanaoka S, Eika Y, Sawamoto M, Higashimura T (1996) Living cationic polymerization of p-chlorostyrene and related para-substituted styrene derivatives at room temperature. Macromolecules 29(5):1778–1783

    Article  CAS  Google Scholar 

  17. Kamigaito M, Nakashima J, Satoh K, Sawamoto M (2003) Controlled cationic polymerization of p-(chloromethyl)styrene: BF3-catalyzed selective activation of a terminal from alcohol. Macromolecules 36(10):3540–3544

    Article  CAS  Google Scholar 

  18. Gromadzki D, Jigounov A, Stepanek P, Makuska R (2010) Synthesis of thermally responsive cylindrical molecular brushes via a combination of nitroxide-mediated radical polymerization and “grafting onto” strategy. Eur Polym J 46(4):804–813

    Article  CAS  Google Scholar 

  19. Ma Z, Zheng C, Shen Z, Liang D, Fan X (2011) Synthesis and properties of comb polymers with semirigid mesogen-jacketed polymers as side chains. J Polym Sci A Polym Chem 50(5):918–926

    Article  Google Scholar 

  20. Lin J-J, Shau S-M, Tseng F-P, Chang F-C (2000) Phase behaviors of poly(oxyethylene)-grafted polypropylene copolymers. J Polym Res 7(1):21–28

    Article  CAS  Google Scholar 

  21. Witte KN, Hur J, Sun W, Kim S, Won Y-Y (2008) Evidence of lateral nanoscale heterogeneities in weak polyelectrolyte brushes. Macromolecules 41(23):8960–8963

    Article  CAS  Google Scholar 

  22. Zhuang Y, Wang L, Lin J, Zhang L (2011) Phase behavior of graft copolymers in concentrated solution. Soft Matter 7(1):137–146

    Article  CAS  Google Scholar 

  23. Aliev MA, Kuzminykh NY (2013) Influence of the polydispersity of side chains on the phase behavior of multigraft copolymers. Russ J Phys Chem B 7:50–61

    Article  CAS  Google Scholar 

  24. Banerjee S, Paira TK, Kotal A, Mandal TK (2010) Room temperature living cationic polymerization of styrene with HX-styrenic monomer adduct/FeCl3 systems in the presence of tetrabutylammonium halide and tetraalkylphosphonium bromide salts. Polymer 51(6):1258–1269

    Article  CAS  Google Scholar 

  25. Banerjee S, Paira TK, Mandal TK (2013) Control of molecular weight and tacticity in stereospecific living cationic polymerization of α-methylstyrene at 0 °C using FeCl3-based initiators: effect of tacticity on thermal properties. Macromol Chem Phys 214:1332–1344

    Article  CAS  Google Scholar 

  26. Sawamoto M, Enoki T, Higashimura T (1987) End-functionalized polymers by living cationic polymerization.1. Mono- and bifunctional poly(vinyl ethers) with terminal malonate or carboxyl groups. Macromolecules 20:1–6

    Article  CAS  Google Scholar 

  27. He H, Zhong M, Konkolewicz D, Yacatto K, Rappold T, Sugar G, David NE, Matyjaszewski K (2013) Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. J Mater Chem A 1(23):6810–6821

    Article  CAS  Google Scholar 

  28. Banerjee S, Paira TK, Kotal A, Mandal TK (2012) Surface-confined atom transfer radical polymerization from sacrificial mesoporous silica nanospheres for preparing mesoporous polymer/carbon nanospheres with faithful shape replication: functional mesoporous materials. Adv Funct Mater 22:4751–4762

    Article  CAS  Google Scholar 

  29. Huang C-F, Nicolay R, Kwak Y, Chang F-C, Matyjaszewski K (2009) Homopolymerization and block copolymerization of N-vinylpyrrolidone by ATRP and RAFT with haloxanthate inifers. Macromolecules 42(21):8198–8210

    Article  CAS  Google Scholar 

  30. Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32(26):8716–8724

    Article  CAS  Google Scholar 

  31. Cheng G, Boker A, Zhang M, Krausch G, Muller AHE (2001) Amphiphilic cylindrical core-shell brushes via a grafting from process using ATRP. Macromolecules 34(20):6883–6888

    Article  CAS  Google Scholar 

  32. Yu P-R, Wu G-L, Peng J-Y, Hu S-A, Xiong Y-Q, Xu W-J (2011) Synthesis of polymethyl methacrylate grafted styrene-butadiene-styrene triblock polymer via atom transfer radical polymerization and its characterization. J Macromol Sci A 48(5):416–422

    Article  CAS  Google Scholar 

  33. Pathak JA, Colby RH, Floudas G, Jerome R (1999) Dynamics in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules 32(8):2553–2561

    Article  CAS  Google Scholar 

  34. Urakawa O, Fuse Y, Hori H, Tran-Cong Q, Yano O (2001) A dielectric study on the local dynamics of miscible polymer blends: poly(2-chlorostyrene)/poly(vinyl methyl ether). Polymer 42(2):765–773

    Article  CAS  Google Scholar 

  35. Hua F, Ruckenstein E (2005) Preparation of densely grafted poly(aniline-2-sulfonic acid-co-aniline)s as novel water-soluble conducting copolymers. J Polym Sci A Polym Chem 43(5):1090–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.M. thanks CSIR for providing fellowship. This research was supported by the grants from CSIR, New Delhi, India, and BRNS, Govt. of India. We thank Mr. Sudipto Chakrabarti of the Department of Solid State Physics, IACS, for AFM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun K. Mandal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 8304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Maji, T. & Mandal, T.K. Graft copolymers via combination of cationic polymerization and atom transfer radical polymerization and their phase separation into spherical/worm-like nanostructures. Colloid Polym Sci 292, 2217–2226 (2014). https://doi.org/10.1007/s00396-014-3249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3249-1

Keywords

Navigation