Skip to main content
Log in

Effect of ionic impurities on the electric field alignment of diblock copolymer thin films

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In Forschung hast Du immer zu mir gesagt, “Schaffe etwas!”. Mein Chef, ich habe immer versucht Deinen Befehlen zu folgen. Ich widme Dir diese Veröffentlichung. Mensch, mit fünf und siebzig bist Du noch jung, schön Geburtstag!

The effect of ionic impurities on the electric field alignment of lamellar microdomains in polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films was studied using transmission electron microscopy (TEM) and atomic force microscopy (AFM). At lithium ion concentrations greater than ~210 ppm, the microdomain morphology in block copolymers could be aligned in the direction of an applied electric field, regardless of the strength of interfacial interactions. Complete alignment of the copolymer microdomains, even those adjacent to the polymer/substrate interface, occurred by a pathway where the applied electric field enhanced fluctuations at the interfaces of the microdomains with a wavelength comparable to L o, the equilibrium period of the copolymer. This enhancement in the fluctuations led to a disruption of the lamellar microdomains into smaller microdomains ~L o in size, that, in time, reconnected to form microdomains oriented in the direction of the applied field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Park M, Harrison C, Chaikin PM, Register RA, Adamson D (1997) Science 276:1401

    Article  CAS  Google Scholar 

  2. Huang E, Rockford L, Russell TP, Hawker CJ (1998) Nature 395:757

    Article  CAS  Google Scholar 

  3. Amundson K, Helfand E, Davis DD, Quan X, Patel SS, Smith SD (1991) Macromolecules 24:6546

    CAS  Google Scholar 

  4. Amundson K, Helfand E, Quan X, Smith SD (1993) Macromolecules 26:2698

    CAS  Google Scholar 

  5. Amundson K, Helfand E, Quan XN, Hudson SD, Smith SD (1994) Macromolecules 27:6559

    CAS  Google Scholar 

  6. Boker A, Knoll A, Elbs H, Abetz V, Muller AHE, Krausch G (2002) Macromolecules 35:1319

    Article  Google Scholar 

  7. Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP (1996) Science 273:931

    CAS  PubMed  Google Scholar 

  8. Thurn-Albrecht T, Schotter J, Kastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126

    Article  CAS  PubMed  Google Scholar 

  9. Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1989) Phys Rev Lett 62:1852

    Article  CAS  PubMed  Google Scholar 

  10. Fredrickson GH (1987) Macromolecules 20:2535

    CAS  Google Scholar 

  11. Xu T, Hawker CJ, Russell TP (2003) (in preparation)

  12. Xu T, Hawker CJ, Russell TP (2003) Macromolecules 36:6178

    Article  CAS  Google Scholar 

  13. Xu T, Russell TP (2003) (in preparation)

  14. Tsori Y, Tournilhac F, Andelman D, Leibler L (2003) Phys Rev Lett 90:145504

    Article  PubMed  Google Scholar 

  15. Lin ZQ, Kerle T, Baker SM, Hoagland DA, Schaffer E, Steiner U, Russell TP (2001) J Chem Phys 114:2377

    Article  CAS  Google Scholar 

  16. Schafer E, Thurn-Albrecht T, Russell TP, Steiner U (2001) Europhys Lett 53:518

    Article  Google Scholar 

  17. Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Science 275:1458

    Article  CAS  Google Scholar 

  18. Hawker CJ (1996) Macromolecules 29:2686

    Article  CAS  Google Scholar 

  19. Kim CS, Oh SM (2000) Electrochim Acta 45:2101

    Article  CAS  Google Scholar 

  20. Tsori Y, Andelman D (2002) Macromolecules 35:5161

    Article  CAS  Google Scholar 

  21. Xu T, Zhu Y, Gido SP, Russell TP (2004) Macromolecules (accepted)

  22. Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Nature 403:874

    Article  Google Scholar 

  23. Kyrylyuk AV, Sevink GJA, Zvelindovsky AV, Fraaije JGEM (2003) Macromol Theor Simul 12:508

    Article  CAS  Google Scholar 

  24. Fukuda J, Onuki A (1995) J Phys II 5:1107

    Article  CAS  Google Scholar 

Download references

Acknoledgements

This work was funded by the Department of Energy Office at Basic Energy Science (DoE-FG02-GbER45612) and the NSF-MRSEC at the University of Massachusetts (DMR-0213695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, T., Goldbach, J.T., Leiston-Belanger, J. et al. Effect of ionic impurities on the electric field alignment of diblock copolymer thin films. Colloid Polym Sci 282, 927–931 (2004). https://doi.org/10.1007/s00396-004-1109-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-004-1109-0

Keywords

Navigation