Skip to main content

Advertisement

Log in

Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Previous investigations indicate that diminished functional expression of voltage-dependent K+ (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.2 channel activity. Initial studies revealed that inhibition of KV channels with 4-aminopyridine (4AP, 0.3 mM) increased intracellular [Ca2+], contracted isolated coronary arterioles and decreased coronary reactive hyperemia. These effects were reversed by blockade of CaV1.2 channels. Further studies in chronically instrumented Ossabaw swine showed that inhibition of CaV1.2 channels with nifedipine (10 μg/kg, iv) had no effect on coronary blood flow at rest or during exercise in lean swine. However, inhibition of CaV1.2 channels significantly increased coronary blood flow, conductance, and the balance between coronary flow and metabolism in obese swine (P < 0.05). These changes were associated with a ~50 % increase in inward CaV1.2 current and elevations in expression of the pore-forming subunit (α1c) of CaV1.2 channels in coronary smooth muscle cells from obese swine. Taken together, these findings indicate that electromechanical coupling between KV and CaV1.2 channels is involved in the regulation of coronary vasomotor tone and that increases in CaV1.2 channel activity contribute to coronary microvascular dysfunction in the setting of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bache RJ, Quanbeck D, Homans DC, Dai XZ (1987) Effects of nifedipine on coronary reactive and exercise induced hyperaemia. Cardiovasc Res 21:766–771. doi:10.1093/cvr/21.10.766

    Article  PubMed  CAS  Google Scholar 

  2. Barbar E, Rola-Pleszczynski M, Payet MD, Dupuis G (2003) Protein kinase C inhibits the transplasma membrane influx of Ca2+ triggered by 4-aminopyridine in Jurkat T lymphocytes. Biochim Biophys Acta 1622:89–98. doi:10.1016/S0304-4165(03)00120-X

    Article  PubMed  CAS  Google Scholar 

  3. Belin de Chantemele EJ, Ali MI, Mintz J, Stepp DW (2009) Obesity induced-insulin resistance causes endothelial dysfunction without reducing the vascular response to hindlimb ischemia. Basic Res Cardiol 104:707–717. doi:10.1007/s00395-009-0042-2

    Article  PubMed  CAS  Google Scholar 

  4. Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH (2009) Altered mechanism of adenosine-induced coronary arteriolar dilation in early-stage metabolic syndrome. Exp Biol Med (Maywood) 234:683–692. doi:10.3181/0812-RM-350

    Article  CAS  Google Scholar 

  5. Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD (2011) Contribution of voltage-dependent K(+) channels to metabolic control of coronary blood flow. J Mol Cell Cardiol 52:912–919. doi:10.1016/j.yjmcc.2011.07.004

    Article  PubMed  Google Scholar 

  6. Berwick ZC, Dick GM, Tune JD (2011) Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 52:848–856. doi:10.1016/j.yjmcc.2011.06.025

    Article  PubMed  Google Scholar 

  7. Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, Tune JD (2012) Contribution of voltage-dependent K+ and Ca2+ channels to coronary pressure-flow autoregulation. Basic Res Cardiol 107:264. doi:10.1007/s00395-012-0264-6

  8. Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD (2010) Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation 17:600–607. doi:10.1111/j.1549-8719.2010.00054.x

    Article  PubMed  CAS  Google Scholar 

  9. Borbouse L, Dick GM, Payne GA, Berwick ZC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD (2010) Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation. Am J Physiol Heart Circ Physiol 298:H1182–H1189. doi:10.1152/ajpheart.00888.2009

    Article  PubMed  CAS  Google Scholar 

  10. Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD (2009) Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 297:H1629–H1637. doi:10.1152/ajpheart.00466.2009

    Article  PubMed  CAS  Google Scholar 

  11. Borbouse L, Dick GM, Payne GA, Payne BD, Svendsen MC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD (2009) Contribution of BKCa channels to local metabolic coronary vasodilation: effects of metabolic syndrome. Am J Physiol Heart Circ Physiol 298:H966–H973. doi:10.1152/ajpheart.00876.2009

    Article  PubMed  Google Scholar 

  12. Bowles DK, Heaps CL, Turk JR, Maddali KK, Price EM (2004) Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not microcirculation. J Appl Physiol 96:2240–2248. doi:10.1152/japplphysiol.01229.2003

    Article  PubMed  CAS  Google Scholar 

  13. Bowles DK, Maddali KK, Ganjam VK, Rubin LJ, Tharp DL, Turk JR, Heaps CL (2004) Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle. Am J Physiol Heart Circ Physiol 287:H2091–H2098. doi:10.1152/ajpheart.00258.2004

    Article  PubMed  CAS  Google Scholar 

  14. Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, Sturek M (2008) Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 294:H2489–H2496. doi:10.1152/ajpheart.01191.2007

    Article  PubMed  CAS  Google Scholar 

  15. del Carmen GM, Torres M, Sanchez-Prieto J (2005) The modulation of Ca2+ and K+ channels but not changes in cAMP signaling contribute to the inhibition of glutamate release by cannabinoid receptors in cerebrocortical nerve terminals. Neuropharmacology 48:547–557. doi:10.1016/j.neuropharm.2004.11.012

    Article  Google Scholar 

  16. Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD (2008) Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol 294:H2371–H2381. doi:10.1152/ajpheart.01279.2007

    Article  PubMed  CAS  Google Scholar 

  17. Dick GM, Tune JD (2010) Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood) 235:10–22. doi:10.1258/ebm.2009.009201

    Article  CAS  Google Scholar 

  18. Dincer UD, Araiza AG, Knudson JD, Molina PE, Tune JD (2006) Sensitization of coronary alpha-adrenoceptor vasoconstriction in the prediabetic metabolic syndrome. Microcirculation 13:587–595. doi:10.1080/10739680600885228

    Article  PubMed  CAS  Google Scholar 

  19. Fan ZW, Zhang ZX, Xu YJ (2004) Inhibition of voltage-gated K+ current in rat intrapulmonary arterial smooth muscle cells by endothelin-1. Yao Xue Xue Bao 39:9–12

    PubMed  CAS  Google Scholar 

  20. Fink RH, Stephenson DG (1987) Ca2+ -movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch 409:374–380. doi:10.1007/BF00583791

    Article  PubMed  CAS  Google Scholar 

  21. Grimaldi M, Atzori M, Ray P, Alkon DL (2001) Mobilization of calcium from intracellular stores, potentiation of neurotransmitter-induced calcium transients, and capacitative calcium entry by 4-aminopyridine. J Neurosci 21:3135–3143

    PubMed  CAS  Google Scholar 

  22. Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6:378–383

    Article  PubMed  CAS  Google Scholar 

  23. Heusch G, Guth BD, Seitelberger R, Ross J Jr (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75:482–490

    Article  PubMed  CAS  Google Scholar 

  24. Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278:C235–C256

    PubMed  CAS  Google Scholar 

  25. Jones SW (2003) Calcium channels: unanswered questions. J Bioenerg Biomembr 35:461–475. doi:10.1023/B:JOBB.0000008020.86004.28

    Article  PubMed  CAS  Google Scholar 

  26. Knudson JD, Dincer UD, Bratz IN, Sturek M, Dick GM, Tune JD (2007) Mechanisms of coronary dysfunction in obesity and insulin resistance. Microcirculation 14:317–338. doi:10.1080/10739680701282887

    Article  PubMed  CAS  Google Scholar 

  27. Kubo T, Taguchi K, Ueda M (1998) L-type calcium channels in vascular smooth muscle cells from spontaneously hypertensive rats: effects of calcium agonist and antagonist. Hypertens Res 21:33–37. doi:10.1291/hypres.21.33

    Article  PubMed  CAS  Google Scholar 

  28. Lassaletta AD, Chu LM, Robich MP, Elmadhun NY, Feng J, Burgess TA, Laham RJ, Sturek M, Sellke FW (2012) Overfed Ossabaw swine with early stage metabolic syndrome have normal coronary collateral development in response to chronic ischemia. Basic Res Cardiol 107:243. doi:10.1007/s00395-012-0243-y

  29. Mandegar M, Yuan JX (2002) Role of K+ channels in pulmonary hypertension. Vascul Pharmacol 38:25–33

    Article  PubMed  CAS  Google Scholar 

  30. McCarty MF (2006) PKC-mediated modulation of L-type calcium channels may contribute to fat-induced insulin resistance. Med Hypotheses 66:824–831. doi:10.1016/j.mehy.2004.08.034

    Article  PubMed  CAS  Google Scholar 

  31. Miller SJ, Norton LE, Murphy MP, Dalsing MC, Unthank JL (2007) The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment. Am J Physiol Heart Circ Physiol 292:H2523–H2531. doi:10.1152/ajpheart.01296.2006

    Article  PubMed  CAS  Google Scholar 

  32. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, Dorbala S, Blankstein R, Di Carli MF (2012) Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126:1858–1868. doi:10.1161/CIRCULATIONAHA.112.120402

    Article  PubMed  CAS  Google Scholar 

  33. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–18

    PubMed  CAS  Google Scholar 

  34. Nelson MT, Standen NB, Brayden JE, Worley JF III (1988) Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336:382–385. doi:10.1038/336382a0

    Article  PubMed  CAS  Google Scholar 

  35. Park WS, Firth AL, Han J, Ko EA (2010) Patho-, physiological roles of voltage-dependent K+ channels in pulmonary arterial smooth muscle cells. J Smooth Muscle Res 46:89–105. doi:10.1540/jsmr.46.89

    Article  PubMed  Google Scholar 

  36. Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M, Tune JD (2010) Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-beta pathway. Arterioscler Thromb Vasc Biol 30:1711–1717. doi:10.1161/ATVBAHA.110.210070

    Article  PubMed  CAS  Google Scholar 

  37. Pesic A, Madden JA, Pesic M, Rusch NJ (2004) High blood pressure upregulates arterial L-type Ca2+ channels: is membrane depolarization the signal? Circ Res 94:e97–104. doi:10.1161/01.RES.0000131495.93500.3c

    Article  PubMed  CAS  Google Scholar 

  38. Pratt PF, Bonnet S, Ludwig LM, Bonnet P, Rusch NJ (2002) Upregulation of L-type Ca2+ channels in mesenteric and skeletal arteries of SHR. Hypertension 40:214–219. doi:10.1161/01.HYP.0000025877.23309.36

    Article  PubMed  CAS  Google Scholar 

  39. Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29:2053–2063. doi:10.1523/JNEUROSCI.4212-08.2009

    Article  PubMed  CAS  Google Scholar 

  40. Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM (2006) Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26:2614–2621. doi:10.1161/01.ATV.0000249408.55796.da

    Article  PubMed  CAS  Google Scholar 

  41. Setty S, Sun W, Martinez R, Downey HF, Tune JD (2004) Alpha-adrenoceptor-mediated coronary vasoconstriction is augmented during exercise in experimental diabetes mellitus. J Appl Physiol 97:431–438. doi:10.1152/japplphysiol.01122.2003

    Article  PubMed  CAS  Google Scholar 

  42. Thorneloe KS, Nelson MT (2005) Ion channels in smooth muscle: regulators of intracellular calcium and contractility. Can J Physiol Pharmacol 83:215–242. doi:10.1139/Y05-016

    Article  PubMed  CAS  Google Scholar 

  43. Wellman GC, Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+ -sensitive ion channels. Cell Calcium 34:211–229. doi:10.1016/S0143-4160(03)00124-6

    Article  PubMed  CAS  Google Scholar 

  44. Witczak CA, Wamhoff BR, Sturek M (2006) Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic Yucatan swine. J Appl Physiol 101:752–762. doi:10.1152/japplphysiol.00235.2006

    Article  PubMed  CAS  Google Scholar 

  45. Wood PG, Gillespie JI (1998) In permeabilised endothelial cells IP3-induced Ca2+ release is dependent on the cytoplasmic concentration of monovalent cations. Cardiovasc Res 37:263–270. doi:10.1016/S0008-6363(97)00207-1

    Article  PubMed  CAS  Google Scholar 

  46. Yuan JX, Aldinger AM, Juhaszova M, Wang J, Conte JV Jr, Gaine SP, Orens JB, Rubin LJ (1998) Dysfunctional voltage-gated K+ channels in pulmonary artery smooth muscle cells of patients with primary pulmonary hypertension. Circulation 98:1400–1406

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AHA grants 10PRE4230035 (ZCB) and NIH grants HL092245 (JDT), HL115140 (JDT and AGO), T32DK007519; O’Leary (HB), T32HL079995; Goodwill (KM), and T32DK064466; Owen (PR).

Conflict of interest

The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnathan D. Tune.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berwick, Z.C., Dick, G.M., O’Leary, H.A. et al. Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 108, 370 (2013). https://doi.org/10.1007/s00395-013-0370-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-013-0370-0

Keywords

Navigation