Skip to main content
Log in

Dissection of the voltage-activated potassium outward currents in adult mouse ventricular myocytes: I to,f, I to,s, I K,slow1, I K,slow2, and I ss

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Voltage-activated outward K+ currents (I Kv) are essential for cardiac repolarization and are major factors in the electrophysiological remodeling and arrhythmias seen in heart disease. Mouse models have been useful for understanding cardiac electrophysiology. However, previous methods for separating and quantifying the components of I Kv in mouse myocardium have yielded inconsistencies. In this study, we developed a statistically rigorous method to uniquely quantify various I Kv in adult mouse ventricular myocytes, and concluded that tri-exponential functions combined with depolarizing pulses of duration greater than 20 s are essential to adequately separate the different I Kv components. This method enabled us to reliably dissect the kinetic components of the decay phase of I Kv into fast (I to), intermediate (KV1.5-encoded I K,slow1) and slow (KV2-encoded I K,slow2) components. The most rapid kinetic phase, I to, can be further dissected into fast (KV4-encoded I to,f) and slow (KV1.4-encoded I to,s) components by measuring recovery from inactivation, voltage-dependence of activation and sensitivity to HpTx-2 and 4-AP. The applicability of our dissection method was validated using transgenic mice over-expressing dominant-negative KV1.1 transgene which largely abolished the 4-AP-sensitive portion of I to (i.e., I to,s) and the I K,slow1 component. We also applied our method to Irx5-deficient mice and verified selective elevations of I to in endocardial myocytes. Our method should prove useful in future electrophysiological studies using mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agus ZS, Dukes ID, Morad M (1991) Divalent cations modulate the transient outward current in rat ventricular myocytes. Am J Physiol 261(2 Pt 1):C310–C318

    CAS  PubMed  Google Scholar 

  2. Babila T, Moscucci A, Wang H, Weaver FE, Koren G (1994) Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment. Neuron 12(3):615–626. doi:10.1016/0896-6273(94)90217-8

    Article  CAS  PubMed  Google Scholar 

  3. Bouchard R, Fedida D (1995) Closed- and open-state binding of 4-aminopyridine to the cloned human potassium channel Kv1.5. J Pharmacol Exp Ther 275(2):864–876

    CAS  PubMed  Google Scholar 

  4. Brahmajothi MV, Campbell DL, Rasmusson RL, Morales MJ, Trimmer JS, Nerbonne JM, Strauss HC (1999) Distinct transient outward potassium current (Ito) phenotypes and distribution of fast-inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J Gen Physiol 113(4):581–600. doi:10.1085/jgp.113.4.581

    Article  CAS  PubMed  Google Scholar 

  5. Brouillette J, Clark RB, Giles WR, Fiset C (2004) Functional properties of K+ currents in adult mouse ventricular myocytes. J Physiol 559(Pt 3):777–798. doi:10.1113/jphysiol.2004.063446

    CAS  PubMed  Google Scholar 

  6. Brunet S, Aimond F, Li H, Guo W, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM (2004) Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. J Physiol 559(Pt 1):103–120. doi:10.1113/jphysiol.2004.063347

    Article  CAS  PubMed  Google Scholar 

  7. Brunner M, Guo W, Mitchell GF, Buckett PD, Nerbonne JM, Koren G (2001) Characterization of mice with a combined suppression of I(to) and I(K, slow). Am J Physiol Heart Circ Physiol 281(3):H1201–H1209

    CAS  PubMed  Google Scholar 

  8. Campbell DL, Qu Y, Rasmusson RL, Strauss HC (1993) The calcium-independent transient outward potassium current in isolated ferret right ventricular myocytes. II. Closed state reverse use-dependent block by 4-aminopyridine. J Gen Physiol 101(4):603–626. doi:10.1085/jgp.101.4.603

    Article  CAS  PubMed  Google Scholar 

  9. Clement-Chomienne O, Ishii K, Walsh MP, Cole WC (1999) Identification, cloning and expression of rabbit vascular smooth muscle Kv1.5 and comparison with native delayed rectifier K+ current. J Physiol 515(Pt 3):653–667. doi:10.1111/j.1469-7793.1999.653ab.x

    Article  CAS  PubMed  Google Scholar 

  10. Colinas O, Perez-Carretero FD, Lopez-Lopez JR, Perez-Garcia MT (2008) A role for DPPX modulating external TEA sensitivity of Kv4 channels. J Gen Physiol 131(5):455–471. doi:10.1085/jgp.200709912

    Article  CAS  PubMed  Google Scholar 

  11. Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W, Lebel M, Cheng CW, Park CY, Pierce SA, Guerchicoff A, Pollevick GD, Chan TY, Kabir MG, Cheng SH, Husain M, Antzelevitch C, Srivastava D, Gross GJ, Hui CC, Backx PH, Bruneau BG (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123(2):347–358. doi:10.1016/j.cell.2005.08.004

    Article  CAS  PubMed  Google Scholar 

  12. Glover DM, Jenkins WJ, Doney SC (2005) Modeling methods for marine science. Cambridge University Press

  13. Dukes ID, Morad M (1991) The transient K+ current in rat ventricular myocytes: evaluation of its Ca2+ and Na+ dependence. J Physiol 435:395–420

    CAS  PubMed  Google Scholar 

  14. Faivre JF, Calmels TP, Rouanet S, Javre JL, Cheval B, Bril A (1999) Characterisation of Kv4.3 in HEK293 cells: comparison with the rat ventricular transient outward potassium current. Cardiovasc Res 41(1):188–199. doi:10.1016/S0008-6363(98)00215-6

    Article  CAS  PubMed  Google Scholar 

  15. Folco E, Mathur R, Mori Y, Buckett P, Koren G (1997) A cellular model for long QT syndrome. Trapping of heteromultimeric complexes consisting of truncated Kv1.1 potassium channel polypeptides and native Kv1.4 and Kv1.5 channels in the endoplasmic reticulum. J Biol Chem 272(42):26505–26510. doi:10.1074/jbc.272.42.26505

    Article  CAS  PubMed  Google Scholar 

  16. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45(6):1227–1234

    CAS  PubMed  Google Scholar 

  17. Guo W, Jung WE, Marionneau C, Aimond F, Xu H, Yamada KA, Schwarz TL, Demolombe S, Nerbonne JM (2005) Targeted deletion of Kv4.2 eliminates I(to,f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction. Circ Res 97(12):1342–1350. doi:10.1161/01.RES.0000196559.63223.aa

    Article  CAS  PubMed  Google Scholar 

  18. Guo W, Li H, Aimond F, Johns DC, Rhodes KJ, Trimmer JS, Nerbonne JM (2002) Role of heteromultimers in the generation of myocardial transient outward K+ currents. Circ Res 90(5):586–593. doi:10.1161/01.RES.0000012664.05949.E0

    Article  CAS  PubMed  Google Scholar 

  19. Guo W, Xu H, London B, Nerbonne JM (1999) Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol 521(Pt 3):587–599. doi:10.1111/j.1469-7793.1999.00587.x

    Google Scholar 

  20. Haim TE, Wang W, Flagg TP, Tones MA, Bahinski A, Numann RE, Nichols CG, Nerbonne JM (2010) Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol 48(2):395–405. doi:10.1016/j.yjmcc.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  21. Hashimoto Y, Nunoki K, Kudo H, Ishii K, Taira N, Yanagisawa T (2000) Changes in the inactivation of rat Kv1.4 K(+) channels induced by varying the number of inactivation particles. J Biol Chem 275(13):9358–9362. doi:10.1074/jbc.275.13.9358

    Article  CAS  PubMed  Google Scholar 

  22. Ikeda SR, Korn SJ (1995) Influence of permeating ions on potassium channel block by external tetraethylammonium. J Physiol 486(Pt 2):267–272

    CAS  PubMed  Google Scholar 

  23. Jost N, Acsai K, Horvath B, Banyasz T, Baczko I, Bitay M, Bogats G, Nanasi PP (2009) Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration? Basic Res Cardiol 104(1):33–41. doi:10.1007/s00395-008-0730-3

    Article  CAS  PubMed  Google Scholar 

  24. Jow F, Zhang ZH, Kopsco DC, Carroll KC, Wang K (2004) Functional coupling of intracellular calcium and inactivation of voltage-gated Kv1.1/Kvbeta1.1 A-type K+ channels. Proc Natl Acad Sci USA 101(43):15535–15540. doi:10.1073/pnas.0402081101

    Article  CAS  PubMed  Google Scholar 

  25. Kerschensteiner D, Stocker M (1999) Heteromeric assembly of Kv2.1 with Kv9.3: effect on the state dependence of inactivation. Biophys J 77(1):248–257. doi:10.1016/S0006-3495(99)76886-4

    Article  CAS  PubMed  Google Scholar 

  26. Klemic KG, Kirsch GE, Jones SW (2001) U-type inactivation of Kv3.1 and Shaker potassium channels. Biophys J 81(2):814–826. doi:10.1016/S0006-3495(01)75743-8

    Article  CAS  PubMed  Google Scholar 

  27. Kramer JW, Post MA, Brown AM, Kirsch GE (1998) Modulation of potassium channel gating by coexpression of Kv2.1 with regulatory Kv5.1 or Kv6.1 alpha-subunits. Am J Physiol 274(6 Pt 1):C1501–C1510

    CAS  PubMed  Google Scholar 

  28. Kurata HT, Doerksen KW, Eldstrom JR, Rezazadeh S, Fedida D (2005) Separation of P/C- and U-type inactivation pathways in Kv1.5 potassium channels. J Physiol 568(Pt 1):31–46. doi:10.1113/jphysiol.2005.087148

    Article  CAS  PubMed  Google Scholar 

  29. Kurata HT, Wang Z, Fedida D (2004) NH2-terminal inactivation peptide binding to C-type-inactivated Kv channels. J Gen Physiol 123(5):505–520. doi:10.1085/jgp.200308956

    Article  CAS  PubMed  Google Scholar 

  30. Kwan DC, Fedida D, Kehl SJ (2006) Single channel analysis reveals different modes of Kv1.5 gating behavior regulated by changes of external pH. Biophys J 90(4):1212–1222. doi:10.1529/biophysj.105.068577

    Article  CAS  PubMed  Google Scholar 

  31. Lacerda AE, Roy ML, Lewis EW, Rampe D (1997) Interactions of the nonsedating antihistamine loratadine with a Kv1.5-type potassium channel cloned from human heart. Mol Pharmacol 52(2):314–322

    CAS  PubMed  Google Scholar 

  32. Leung YM, Kang Y, Gao X, Xia F, Xie H, Sheu L, Tsuk S, Lotan I, Tsushima RG, Gaisano HY (2003) Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking. J Biol Chem 278(19):17532–17538. doi:10.1074/jbc.M213088200

    Article  CAS  PubMed  Google Scholar 

  33. Li H, Guo W, Yamada KA, Nerbonne JM (2004) Selective elimination of I(K,slow1) in mouse ventricular myocytes expressing a dominant negative Kv1.5alpha subunit. Am J Physiol Heart Circ Physiol 286(1):H319–H328. doi:10.1152/ajpheart.00665.2003

    Article  CAS  PubMed  Google Scholar 

  34. London B, Guo W, Pan X, Lee JS, Shusterman V, Rocco CJ, Logothetis DA, Nerbonne JM, Hill JA (2001) Targeted replacement of KV1.5 in the mouse leads to loss of the 4-aminopyridine-sensitive component of I(K,slow) and resistance to drug-induced QT prolongation. Circ Res 88(9):940–946. doi:10.1161/hh0901.090929

    Article  CAS  PubMed  Google Scholar 

  35. London B, Jeron A, Zhou J, Buckett P, Han X, Mitchell GF, Koren G (1998) Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and first transmembrane segment of a voltage-gated potassium channel. Proc Natl Acad Sci USA 95(6):2926–2931

    Article  CAS  PubMed  Google Scholar 

  36. Lu Y, Hanna ST, Tang G, Wang R (2002) Contributions of Kv1.2, Kv1.5 and Kv2.1 subunits to the native delayed rectifier K(+) current in rat mesenteric artery smooth muscle cells. Life Sci 71(12):1465–1473. doi:10.1016/S0024-3205(02)01922-7

    Article  CAS  PubMed  Google Scholar 

  37. Niwa N, Wang W, Sha Q, Marionneau C, Nerbonne JM (2008) Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. J Mol Cell Cardiol 44(1):95–104. doi:10.1016/j.yjmcc.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  38. Oudit GY, Kassiri Z, Sah R, Ramirez RJ, Zobel C, Backx PH (2001) The molecular physiology of the cardiac transient outward potassium current (I(to)) in normal and diseased myocardium. J Mol Cell Cardiol 33(5):851–872. doi:10.1006/jmcc.2001.1376

    Article  CAS  PubMed  Google Scholar 

  39. Patel AJ, Lazdunski M, Honore E (1997) Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J 16(22):6615–6625. doi:10.1093/emboj/16.22.6615

    Article  CAS  PubMed  Google Scholar 

  40. Patel SP, Campbell DL (2005) Transient outward potassium current, ‘Ito’, phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 569(Pt 1):7–39. doi:10.1113/jphysiol.2005.086223

    Article  CAS  PubMed  Google Scholar 

  41. Piao L, Li J, McLerie M, Lopatin AN (2007) Transgenic upregulation of IK1 in the mouse heart is proarrhythmic. Basic Res Cardiol 102(5):416–428. doi:10.1007/s00395-007-0659-y

    Article  PubMed  Google Scholar 

  42. Rampe D, Wang Z, Fermini B, Wible B, Dage RC, Nattel S (1995) Voltage- and time-dependent block by perhexiline of K+ currents in human atrium and in cells expressing a Kv1.5-type cloned channel. J Pharmacol Exp Ther 274(1):444–449

    CAS  PubMed  Google Scholar 

  43. Rampe D, Wible B, Brown AM, Dage RC (1993) Effects of terfenadine and its metabolites on a delayed rectifier K+ channel cloned from human heart. Mol Pharmacol 44(6):1240–1245

    CAS  PubMed  Google Scholar 

  44. Rao CR (1973) Linear statistical inference and its applications. Wiley series in probability and mathematical statistics, 2nd edn. Wiley, New York

    Book  Google Scholar 

  45. Rossow CF, Minami E, Chase EG, Murry CE, Santana LF (2004) NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction. Circ Res 94(10):1340–1350. doi:10.1161/01.RES.0000128406.08418.34

    Article  CAS  PubMed  Google Scholar 

  46. Sanguinetti MC, Johnson JH, Hammerland LG, Kelbaugh PR, Volkmann RA, Saccomano NA, Mueller AL (1997) Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol 51(3):491–498

    CAS  PubMed  Google Scholar 

  47. Stones R, Billeter R, Zhang H, Harrison S, White E (2009) The role of transient outward K+ current in electrical remodelling induced by voluntary exercise in female rat hearts. Basic Res Cardiol 104(6):643–652. doi:10.1007/s00395-009-0030-6

    Article  PubMed  Google Scholar 

  48. Tseng GN (1999) Different state dependencies of 4-aminopyridine binding to rKv1.4 and rKv4.2: role of the cytoplasmic halves of the fifth and sixth transmembrane segments. J Pharmacol Exp Ther 290(2):569–577

    CAS  PubMed  Google Scholar 

  49. Tseng GN, Jiang M, Yao JA (1996) Reverse use dependence of Kv4.2 blockade by 4-aminopyridine. J Pharmacol Exp Ther 279(2):865–876

    CAS  PubMed  Google Scholar 

  50. Volk T, Nguyen TH, Schultz JH, Faulhaber J, Ehmke H (2001) Regional alterations of repolarizing K+ currents among the left ventricular free wall of rats with ascending aortic stenosis. J Physiol 530(Pt 3):443–455. doi:10.1111/j.1469-7793.2001.0443k.x

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Cheng J, Chen G, Rob F, Naseem RH, Nguyen L, Johnstone JL, Hill JA (2007) Remodeling of outward K+ currents in pressure-overload heart failure. J Cardiovasc Electrophysiol 18(8):869–875. doi:10.1111/j.1540-8167.2007.00864.x

    Article  PubMed  Google Scholar 

  52. Wettwer E, Amos GJ, Posival H, Ravens U (1994) Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ Res 75(3):473–482

    CAS  PubMed  Google Scholar 

  53. Wickenden AD, Jegla TJ, Kaprielian R, Backx PH (1999) Regional contributions of Kv1.4, Kv4.2, and Kv4.3 to transient outward K+ current in rat ventricle. Am J Physiol 276(5 Pt 2):H1599–H1607

    CAS  PubMed  Google Scholar 

  54. Wickenden AD, Lee P, Sah R, Huang Q, Fishman GI, Backx PH (1999) Targeted expression of a dominant-negative K(v)4.2 K(+) channel subunit in the mouse heart. Circ Res 85(11):1067–1076

    CAS  PubMed  Google Scholar 

  55. Wickenden AD, Tsushima RG, Losito VA, Kaprielian R, Backx PH (1999) Effect of Cd2+ on Kv4.2 and Kv1.4 expressed in Xenopus oocytes and on the transient outward currents in rat and rabbit ventricular myocytes. Cell Physiol Biochem 9(1):11–28. doi:10.1159/000016299

    Article  CAS  PubMed  Google Scholar 

  56. Xu H, Barry DM, Li H, Brunet S, Guo W, Nerbonne JM (1999) Attenuation of the slow component of delayed rectification, action potential prolongation, and triggered activity in mice expressing a dominant-negative Kv2 alpha subunit. Circ Res 85(7):623–633

    CAS  PubMed  Google Scholar 

  57. Xu H, Guo W, Nerbonne JM (1999) Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. J Gen Physiol 113(5):661–678. doi:10.1085/jgp.113.5.661

    Article  CAS  PubMed  Google Scholar 

  58. Zarayskiy VV, Balasubramanian G, Bondarenko VE, Morales MJ (2005) Heteropoda toxin 2 is a gating modifier toxin specific for voltage-gated K+ channels of the Kv4 family. Toxicon 45(4):431–442. doi:10.1016/j.toxicon.2004.11.015

    Article  CAS  PubMed  Google Scholar 

  59. Zhang H, Zhu B, Yao JA, Tseng GN (1998) Differential effects of S6 mutations on binding of quinidine and 4-aminopyridine to rat isoform of Kv1.4: common site but different factors in determining blockers’ binding affinity. J Pharmacol Exp Ther 287(1):332–343

    CAS  PubMed  Google Scholar 

  60. Zhang M, Jiang M, Tseng GN (2001) minK-related peptide 1 associates with Kv4.2 and modulates its gating function: potential role as beta subunit of cardiac transient outward channel? Circ Res 88(10):1012–1019. doi:10.1161/hh1001.090839

    Article  CAS  PubMed  Google Scholar 

  61. Zhou J, Jeron A, London B, Han X, Koren G (1998) Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circ Res 83(8):806–814

    CAS  PubMed  Google Scholar 

  62. Zhou J, Kodirov S, Murata M, Buckett PD, Nerbonne JM, Koren G (2003) Regional upregulation of Kv2.1-encoded current, IK,slow2, in Kv1DN mice is abolished by crossbreeding with Kv2DN mice. Am J Physiol Heart Circ Physiol 284(2):H491–H500. doi:10.1152/ajpheart.00576.2002

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Roman Pekhletski, Farzad Izaddoustdar, and Islam M. Zahadul for technical discussion and support. K.-H.K. was supported in part by graduate studentships from the Ontario Graduate Scholarship in Science and Technology program. M.J.M was supported by a grant from John R. Oishei Foundation. This study was funded by grants from Heart & Stroke Foundation of Ontario (T6485) to P.H.B. P.H.B. holds a Career Investigator Award from the Heart & Stroke Foundation of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Backx.

Additional information

J. Liu and K.-H. Kim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Kim, KH., London, B. et al. Dissection of the voltage-activated potassium outward currents in adult mouse ventricular myocytes: I to,f, I to,s, I K,slow1, I K,slow2, and I ss . Basic Res Cardiol 106, 189–204 (2011). https://doi.org/10.1007/s00395-010-0134-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0134-z

Keywords

Navigation