Skip to main content

Advertisement

Log in

Influence of ENSO on the Pacific decadal oscillation in CMIP models

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Emerging decadal climate predictions call for an assessment of decadal climate variability in the Coupled Model Intercomparison Project (CMIP) database. In this paper, we evaluate the influence of El Niño Southern Oscillation (ENSO) on Pacific Decadal Oscillation (PDO) in 10 control simulations from the CMIP3 and 22 from the CMIP5 database. All models overestimate the time lag between ENSO forcing and the PDO response. While half of the models exhibit ENSO-PDO correlation which is close to that in observation (>0.5) when the time lag is accounted for, the rest of the models underestimate this relationship. Models with stronger ENSO-PDO correlation tend to exhibit larger PDO-related signals in the equatorial and south Pacific, highlighting the key role of ENSO teleconnection in setting the inter-hemispheric Pacific pattern of the PDO. The strength of the ENSO-PDO relationship is related to both ENSO amplitude and strength of ENSO teleconnection to the North Pacific sea-level pressure variability in the Aleutian Low region. The shape of the PDO spectrum is consistent with that predicted from a combination of direct ENSO forcing, atmospheric stochastic forcing over the North Pacific and the re-emergence process in 27 models out of 32. Given the essential role of ENSO in shaping the Pacific decadal variability, models displaying realistic ENSO amplitude and teleconnections should be preferentially used to perform decadal prediction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA (1990) Simulation of the response of the North Pacific Ocean to the anomalous atmospheric circulation associated with El Niño. Clim Dyn 5:53–65. doi:10.1007/BF00195853

    Article  Google Scholar 

  • Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137

    Article  Google Scholar 

  • Alexander MA, Scott JD (2008) The role of Ekman ocean heat transport in the Northern Hemisphere response to ENSO. J Climate 21:5688–5707

    Article  Google Scholar 

  • Alexander MA, Bladé I, Newman M et al (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Climate 15:2205–2231

    Article  Google Scholar 

  • Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) STL: a seasonal-trend decomposition procedure based on loess. J Off Stat 6:3–73

    Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. QJRMS 137:1–28. doi:10.1002/qj.776

    Article  Google Scholar 

  • Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Climate 8:1677–1680

    Article  Google Scholar 

  • Deser C, Alexander MA, Timlin MS (2003) Understanding the persistence of sea surface temperature anomalies in midlatitudes. J Climate 16:57–72

    Article  Google Scholar 

  • Deser C, Phillips AS, Tomas RA et al (2012) ENSO and Pacific decadal variability in the community climate system model version 4. J Climate 25:2622–2651

    Article  Google Scholar 

  • Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability*. J Clim 27(6):2271–2296

    Article  Google Scholar 

  • Deser C, Terray L, Phillips AS (2016) Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications*. J Clim 29(6):2237–2258

    Article  Google Scholar 

  • Di Lorenzo E, Schneider N, Cobb KM, Chhak K, Franks PJS, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchister E, Powell TM, Rivere P (2008) North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys Res Lett 35:L08607. doi:10.1029/2007GL032838

    Article  Google Scholar 

  • Easterling DR, Wehner MF (2009) Is the climate warming or cooling? Geophys Res Lett 36:L08706. doi:10.1029/2009GL037810

    Article  Google Scholar 

  • England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Folland CK (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29:1643. doi:10.1029/2001GL014201

    Article  Google Scholar 

  • Frankignoul C, Hasselman K (1977) Stochastic climate models. part 2: application to sea–surface temperature variability and thermocline variability. Tellus 29:284–305

    Article  Google Scholar 

  • Furtado JC, Di Lorenzo E, Schneider N (2011) North Pacific decadal variability and climate change in the IPCC AR4 models. J Clim 24:3049–3067. doi:10.1175/2010JCLI3584.1

    Article  Google Scholar 

  • Garreaud R, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation*. J Climate 12:2113–2123

    Article  Google Scholar 

  • Guemas V, Doblas Reyes FJ, Lienert F, et al (2012) Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J Geophys Res. 1984–2012, 117 doi:10.1029/2012JD018004

    Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(18 567–18):589. doi:10.1029/97JC01736

    Google Scholar 

  • Klein SA, Soden BJ, Lao NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Climate 12:917–932. doi:10.1175/1520-0442(1999)0122.0.CO;2

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH et al (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376. doi:10.1175/2009BAMS2755.1

    Article  Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  Google Scholar 

  • Kwon M, Yeh SW, Park YG, Lee YK (2012) Changes in the linear relationship of ENSO-PDO under the global warming. Int J Climatol 33:1121–1128. doi:10.1002/joc.3497

    Article  Google Scholar 

  • Lau NC, Nath MJ (1994) A modeling study of the relative roles of tropical and extratropical SST anomalies in the variability of the global atmosphere–ocean system. J Clim 7:1184–1207

    Article  Google Scholar 

  • Lau N-C, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Climate 9:2036–2057

    Article  Google Scholar 

  • Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309

    Article  Google Scholar 

  • Lienert F, Fyfe JC, Merryfield WJ (2011) Do climate models capture the tropical influences on North Pacific sea surface temperature variability? J Clim 24:6203–6209. doi:10.1175/JCLI-D-11-00205.1

    Article  Google Scholar 

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective*. J Climate 25:1963–1995. doi:10.1175/2011JCLI3980.1

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Amer Meteor Soc 78:1069–1079

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in earth science. Science 314:1740–1745. doi:10.1126/science.1132588

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT et al (2011) Model-based evidence of deep-ocean heat uptake during surface–temperature hiatus periods. Nat Clim change 1:360–364. doi:10.1038/nclimate1229

    Article  Google Scholar 

  • Meehl GA, Goddard L, Boer G et al (2014) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95:243–267. doi:10.1175/BAMS-D-12-00241.1

    Article  Google Scholar 

  • Nakamura H, Lin G, Yamagata T (1997) Decadal climate variability in the north pacific during the recent decades. Bull Am Meteorol Soc 78(10):2215–2225

    Article  Google Scholar 

  • Namias J, Born RM (1974) Further studies of temporal coherence in North Pacific Sea surface temperatures. J Geophys Res Oceans (1978–2012) 79:797–798.

    Article  Google Scholar 

  • Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim 20:2333–2356. doi:10.1175/JCLI4165.1

    Article  Google Scholar 

  • Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26:5260–5269. doi:10.1175/JCLI-D-12-00590.1

    Article  Google Scholar 

  • Newman M, Alexander MA, Ault TR et al (2016) The pacific decadal oscillation, revisited. J Clim 29(12):4399–4427

    Article  Google Scholar 

  • Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Climate 16(23)

  • Oshima K, Tanimoto Y (2009) An evaluation of reproducibility of the Pacific decadal oscillation in the CMIP3 simulations. JMSJ 87:755–770. doi:10.2151/jmsj.87.755

    Article  Google Scholar 

  • Park J-H, An SI, Yeh S-W, Schneider N (2013) Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theor Appl Climatol 112:431–445. doi:10.1007/s00704-012-0730-y

    Article  Google Scholar 

  • Pierce DW, Barnett TP, Latif M (2000) Connections between the Pacific Ocean tropics and midlatitudes on decadal timescales. J Clim 13:1173–1194

    Article  Google Scholar 

  • Power S, Tseitkin F, Mehta V, Lavery B (1999) Decadal climate variability in Australia during the twentieth century. Int J Climatol 19(2): 169–184

    Article  Google Scholar 

  • Qiu B, Schneider N, Chen S (2007) Coupled decadal variability in the North Pacific: an observationally constrained idealized model*. J Climate 20:3602–3620

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Oceans (1978–2012) 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation*. J Climate 18:4355–4357

    Article  Google Scholar 

  • Shakun JD, Shaman J (2009) Tropical origins of North and South Pacific decadal variability. Geophys Res Lett 36:L19711. doi:10.1029/2009GL040313

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Climate 21:2283–2296. doi:10.1175/2007JCLI2100.1

    Article  Google Scholar 

  • Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE, Branstator GW, Karoly D, et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res Oceans (1978–2012) 103:14291–14324. doi:10.1029/97JC01444

    Article  Google Scholar 

  • Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability*. J Clim 18(12):2080–2092

    Article  Google Scholar 

  • Woodruff SD, Worley SJ, Lubker SJ et al (2011) ICOADS Release 2.5: extensions and enhancements to the surface marine meteorological archive. Int J Climatol 31:951–967. doi:10.1002/joc.2103

    Article  Google Scholar 

  • Wu L, Liu Z, Gallimore R et al (2003) Pacific decadal variability: The tropical Pacific mode and the North Pacific mode. J Climate 16(8)

  • Yim BY, Kwon M, Min HS, Kug JS (2014) Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim Dyn 44:1521–1540. doi:10.1007/s00382-014-2349-4

    Article  Google Scholar 

  • Yin X, Gleason BE, Compo GP, Matsui N (2008) The International Surface Pressure Databank (ISPD) land component version 2.2., National Climatic Data Center, Asheville, NC, pp 1–12, 2008

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Climate 10:1004–1020

    Article  Google Scholar 

Download references

Acknowledgements

The lead author is supported by financial assistance and research facilities of CSIR-NIO, India. This research was sponsored under the Agence Nationale pour la Recherche (ANR) MORDICUS project ANR-13-SENV-0002. This work was done while ML was a visiting scientist at the CSIR-NIO, under Institut de Recherche pour le Développement (IRD) funding. JV and TI also acknowledge IRD support for regular visits to CSIR-NIO. We thank the anonymous reviewer for the valuable comments that helped to improve the manuscript. This is CSIR-NIO contribution No. 5980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nidheesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nidheesh, A.G., Lengaigne, M., Vialard, J. et al. Influence of ENSO on the Pacific decadal oscillation in CMIP models. Clim Dyn 49, 3309–3326 (2017). https://doi.org/10.1007/s00382-016-3514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3514-8

Keywords

Navigation