Skip to main content

Advertisement

Log in

Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Future hydroclimate projections from state-of-the-art climate models show large uncertainty and model spread, particularly in the tropics and over the monsoon regions. The precipitation and circulation responses to rising greenhouse gases involve a fast component associated with direct radiative forcing and a slow component associated with sea surface temperature (SST) warming; the relative importance of the two may contribute to model discrepancies. In this study, regional hydroclimate responses to greenhouse warming are assessed using output from coupled general circulation models in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) and idealized atmospheric general circulation model experiments from the Atmosphere Model Intercomparison Project. The thermodynamic and dynamic mechanisms causing the rainfall changes are examined using moisture budget analysis. Results show that direct radiative forcing and SST change exert significantly different responses both over land and ocean. For most part of the Asian monsoon region, the summertime rainfall changes are dominated by the direct CO2 radiative effect through enhanced monsoon circulation. The response to SST warming shows a larger model spread compared to direct radiative forcing, possibly due to the cancellation between the thermodynamical and dynamical components. While the thermodynamical response of the Asian monsoon is robust across the models, there is a lack of consensus for the dynamical response among the models and weak multi-model mean responses in the CMIP5 ensemble, which may be related to the multiple physical processes evolving on different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419(6903):224–232. doi:10.1038/nature01092

    Article  Google Scholar 

  • Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22(10):2557–2570. doi:10.1175/2008JCLI2759.1

    Article  Google Scholar 

  • Andrews T, Gregory JM, Webb MJ, Taylor KE (2012) Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys Res Lett 39(9):L09,712. doi:10.1029/2012GL051607

    Article  Google Scholar 

  • Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci (USA) 105(22):7664–7669. doi:10.1073/pnas.0711648105

    Article  Google Scholar 

  • Bala G, Caldeira K, Nemani R (2010) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35(2–3):423–434. doi:10.1007/s00382-009-0583-y

    Article  Google Scholar 

  • Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334(6055):502–505. doi:10.1126/science.1204994

    Article  Google Scholar 

  • Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6(6):447–451. doi:10.1038/NGEO1799

    Article  Google Scholar 

  • Byrne MP, O’Gorman PA (2013) Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys Res Lett 40(19):5223–5227. doi:10.1002/grl.50971

    Article  Google Scholar 

  • Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim 26(11):3803–3822. doi:10.1175/JCLI-D-12-00543.1

    Article  Google Scholar 

  • Chadwick R, Good P, Andrews T, Martin G (2014) Surface warming patterns drive tropical rainfall pattern responses to CO\(_{2}\) forcing on all timescales. Geophys Res Lett 41(2):610–615. doi:10.1002/2013GL058504

    Article  Google Scholar 

  • Christensen J, Kumar KK, Aldrian E, An SI, Cavalcanti I, de Castro M, Dong W, Goswami P, Hall A, Kanyanga J, Kitoh A, Kossin J, Lau NC, Renwick J, Stephenson D, Xie SP, Zhou T (2014) Climate phenomena and their relevance for future regional climate change. In: Stocker T, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, pp 1217–1308

  • Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22(2):396–413. doi:10.1175/2008JCLI2453.1

    Article  Google Scholar 

  • Endo H, Kitoh A (2014) Thermodynamic and dynamic effects on regional monsoon rainfall changes in a warmer climate. Geophys Res Lett 41(5):1704–1711. doi:10.1002/2013GL059158

    Article  Google Scholar 

  • Grise KM, Polvani LM (2014) The response of midlatitude jets to increased CO\(_2\): distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys Res Lett 41(19):6863–6871. doi:10.1002/2014GL061638

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102(D6):6831–6864. doi:10.1029/96JD03436

    Article  Google Scholar 

  • Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • He J, Soden BJ (2015a) Anthropogenic weakening of the tropical circulation: the relative roles of direct CO\(_2\) forcing and sea surface temperature change. J Clim 28(22):8728–8742. doi:10.1175/JCLI-D-15-0205.1

    Article  Google Scholar 

  • He J, Soden BJ (2015b) Does the lack of coupling in SST-forced atmosphere-only models limit their usefulness for climate change studies? J Clim. doi:10.1175/JCLI-D-14-00597.1

  • He J, Soden BJ, Kirtman B (2014) The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys Res Lett 41(7):2614–2622. doi:10.1002/2014GL059435

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. doi:10.1175/JCLI3990.1

    Article  Google Scholar 

  • Joshi M, Gregory J, Webb M, Sexton D, Johns T (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 30(5):455–465. doi:10.1007/s00382-007-0306-1

    Article  Google Scholar 

  • Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014a) Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate—part I: past changes and future projections. Clim Dyn 43(9–10):2553–2568. doi:10.1007/s00382-014-2073-0

    Article  Google Scholar 

  • Kamae Y, Watanabe M, Kimoto M, Shiogama H (2014b) Summertime land-sea thermal contrast and atmospheric circulation over East Asia in a warming climate—part II: importance of CO\(_{2}\)-induced continental warming. Clim Dyn 43(9–10):2569–2583. doi:10.1007/s00382-014-2146-0

    Article  Google Scholar 

  • Kelley C, Ting M, Seager R, Kushnir Y (2012) The relative contributions of radiative forcing and internal climate variability to the late 20th century winter drying of the Mediterranean region. Clim Dyn 38(9–10):2001–2015. doi:10.1007/s00382-011-1221-z

    Article  Google Scholar 

  • Kent C, Chadwick R, Rowell DP (2015) Understanding uncertainties in future projections of seasonal tropical precipitation. J Clim 28(11):4390–4413. doi:10.1175/JCLI-D-14-00613.1

    Article  Google Scholar 

  • Krishnan R, Sabin T, Vellore R, Mujumdar M, Sanjay J, Goswami B, Hourdin F, Dufresne JL, Terray P (2015) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 1–21. doi:10.1007/s00382-015-2886-5

  • Kumar KK, Kumar KR, Ashrit RG, Deshpande NR, Hansen JW (2004) Climate impacts on Indian agriculture. Int J Climatol 24(11):1375–1393. doi:10.1002/joc.1081

    Article  Google Scholar 

  • Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26(7–8):855–864. doi:10.1007/s00382-006-0114-z

    Article  Google Scholar 

  • Li X, Ting M (2015) Recent and future changes in the Asian monsoon-ENSO relationship: natural or forced? Geophys Res Lett 42(9):3502–3512. doi:10.1002/2015GL063557

    Article  Google Scholar 

  • Li X, Ting M, Li C, Henderson N (2015) Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J Clim 28(10):4107–4125. doi:10.1175/JCLI-D-14-00559.1

    Article  Google Scholar 

  • Ma J, Xie SP (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26(8):2482–2501. doi:10.1175/JCLI-D-12-00283.1

    Article  Google Scholar 

  • Ma J, Xie SP, Kosaka Y (2012) Mechanisms for tropical tropospheric circulation change in response to global warming. J Clim 25(8):2979–2994. doi:10.1175/JCLI-D-11-00048.1

    Article  Google Scholar 

  • Mitchell JFB (1983) The seasonal response of a general circulation model to changes in CO\(_{2}\) and sea temperatures. Q J R Meteorol Soc 109(459):113–152. doi:10.1002/qj.49710945906

    Article  Google Scholar 

  • Mitchell JFB, Wilson CA, Cunnington WM (1987) On CO\(_{2}\) climate sensitivity and model dependence of results. Q J R Meteorol Soc 113(475):293–322. doi:10.1002/qj.49711347517

    Article  Google Scholar 

  • O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic constraints on precipitation under climate change. Surv Geophys 33(3–4):585–608. doi:10.1007/s10712-011-9159-6

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. doi:10.5676/DWD_GPCC/FD_M_V6_050

  • Seager R, Henderson N (2013) Diagnostic computation of moisture budgets in the ERA-Interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J Clim 26(20):7876–7901. doi:10.1175/JCLI-D-13-00018.1

    Article  Google Scholar 

  • Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau NC, Li C, Velez J, Naik N (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184. doi:10.1126/science.1139601

    Article  Google Scholar 

  • Seager R, Liu H, Henderson N, Simpson I, Kelley C, Shaw T, Kushnir Y, Ting M (2014) Causes of increasing aridification of the Mediterranean region in response to rising greenhouse gases. J Clim 27(12):4655–4676. doi:10.1175/JCLI-D-13-00446.1

    Article  Google Scholar 

  • Shaw TA, Voigt A (2015) Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat Geosci 8(7):560–566. doi:10.1038/ngeo2449

    Article  Google Scholar 

  • Shindell DT, Lamarque JF, Schulz M, Flanner M, Jiao C, Chin M, Young PJ, Lee YH, Rotstayn L, Mahowald N, Milly G, Faluvegi G, Balkanski Y, Collins WJ, Conley AJ, Dalsoren S, Easter R, Ghan S, Horowitz L, Liu X, Myhre G, Nagashima T, Naik V, Rumbold ST, Skeie R, Sudo K, Szopa S, Takemura T, Voulgarakis A, Yoon JH, Lo F (2013) Radiative forcing in the ACCMIP historical and future climate simulations. Atmos Chem Phys 13(6):2939–2974. doi:10.5194/acp-13-2939-2013

    Article  Google Scholar 

  • Takahashi K (2009) Radiative constraints on the hydrological cycle in an idealized radiative-convective equilibrium model. J Atmos Sci 66(1):77–91. doi:10.1175/2008JAS2797.1

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192. doi:10.1029/2000JD900719

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE, Guillemot CJ (1995) Evaluation of the global atmospheric moisture budget as seen from analyses. J Clim 8(9):2255–2272. doi:10.1175/1520-0442(1995) 008<2255:EOTGAM>2.0.CO;2

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang 2(8):587–595. doi:10.1038/nclimate1495

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wang B, Yim SY, Lee JY, Liu J, Ha KJ (2014) Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim Dyn 42(1–2):83–100. doi:10.1007/s00382-013-1769-x

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23(4):966–986. doi:10.1175/2009JCLI3329.1

    Article  Google Scholar 

  • Xie SP, Deser C, Vecchi GA, Collins M, Delworth TL, Hall A, Hawkins E, Johnson NC, Cassou C, Giannini A, Watanabe M (2015) Towards predictive understanding of regional climate change. Nat Clim Chang 5(10):921–930. doi:10.1038/nclimate2689

    Article  Google Scholar 

  • Yang F, Kumar A, Schlesinger ME, Wang W (2003) Intensity of hydrological cycles in warmer climates. J Clim 16(14):2419–2423. doi:10.1175/2779.1

    Article  Google Scholar 

  • Zhang X, He J, Zhang J, Polyakov I, Gerdes R, Inoue J, Wu P (2013) Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat Clim Chang 3(1):47–51. doi:10.1038/nclimate1631

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Naomi Henderson for helping with the moisture budget calculations, Haibo Liu for downloading and pre-processing the CMIP5 data used in this study, and Michela Biasutti, Yochanan Kushnir, Tiffany Shaw, and Yutian Wu for helpful discussions. We also greatly appreciate the helpful comments from two anonymous reviewers. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was supported by the National Science Foundation Grant AGS16-07348, the Office of Naval Research MURI Grant 511 N00014-12-1-0911, and the Climate Center Award at Lamont-Doherty Earth Observatory, Columbia University. XL was also supported by National Aeronautics and Space Administration (NASA) Headquarters under the NASA Earth and Space Science Fellowship Program-Grant NNX15AP01H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiong Li.

Additional information

Lamont-Doherty Earth Observatory contribution number 8078.

Appendix

Appendix

1.1 Evaluation of Asian summer monsoon rainfall climatology in coupled and atmosphere-only models

In this section, we provide a brief evaluation of the coupled and atmosphere-only models available for this study. Figure 12 shows the Taylor diagram (Taylor 2001) of JJA rainfall climatology over the Asian monsoon region (\(5 ^\circ N\)\(55 ^\circ N\), \(60 ^\circ E\)\(150 ^\circ E\), land-only) in 35 CMIP5 coupled models (black) and the 11 AMIP models (red). We used monthly data from two gridded observational datasets for precipitation: the Climate Research Unit (CRU) at the University of East Anglia (UEA) version 3.2 (Harris et al. 2014), and the Global Precipitation Climatology Centre (GPCC) Full Data Product version 6 from the World Climate Research Programme (WCRP) Global Climate Observing System (GCOS) (Schneider et al. 2011). The spatial resolution is \(0.5^\circ \times 0.5^\circ\) for both datasets. We interpolated all observed and modeled data into a \(1^\circ \times 1^\circ\) spatial resolution for direct comparison. The time period for the climatology is 1976–2005 for CMIP5 models and the 30 years available for the AMIP models. CRU is chosen as the reference.

Fig. 12
figure 12

Taylor diagram showing (blue dot-dashed lines) the spatial pattern correlation coefficient, (black dotted contours) standard deviation, (green dashed contours) the root-mean-square difference (RMSD) for JJA area averaged (\(5 ^\circ N\)\(55 ^\circ N\), \(60 ^\circ E\)\(150 ^\circ E\)) land precipitation climatology in (black dots) 35 CMIP5 models (1976–2005) and (red dots) 11 AMIP models. Orange dots show observations (CRU, GPCC). CRU is used as the reference field. Rainfall is in \({\rm{mm}}\,{\rm{day}}^{-1}\)

The spatial correlations range from 0.6 to 0.8 for most of the coupled models, with comparable standard deviations as observations. The coupled (black) and atmosphere-only (red) models do not exhibit significant differences, suggesting that ocean coupling does not have much effect in simulating monsoon climatology. Only one AGCM (FGOALS-g2) produces an unrealistically large standard deviation due to an overestimation of rainfall over India and Indochina (not shown), thus we eliminated this model from further analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ting, M. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change. Clim Dyn 49, 2863–2880 (2017). https://doi.org/10.1007/s00382-016-3470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3470-3

Keywords

Navigation