Skip to main content

Advertisement

Log in

Three centuries of winter temperature change on the southeastern Tibetan Plateau and its relationship with the Atlantic Multidecadal Oscillation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Long-term, high-resolution proxy records containing cold season temperature signals are scarce on the southeastern Tibetan Plateau (TP), limiting our understanding of regional climate and the potential driving forces. In this study, we present a nearly three centuries long reconstruction of winter (December–February) mean temperature for the central Hengduan Mountains, southeastern TP. The reconstruction is derived from a composite tree-ring width chronology of Pinus yunnanensis Franch from two high elevation sites (>3000 m above sea level). Our reconstruction passes all standard calibration-verification schemes and explains nearly 73 % of the variance of the original instrumental data. However, we were constrained to calibrate our full period (1718–2013) reconstruction of December–February mean temperature on the calibration period from 1959 to 1992 only, due to a decrease in temperature sensitivity of tree-ring index exhibited after 1992. Spatial correlation analysis shows that our reconstruction represents large-scale temperature variations in southwest China and the eastern TP. Our reconstructed December–February mean temperature shows a close association with the Atlantic Multidecadal Oscillation (AMO) over the past three centuries, with warm (cold) periods coinciding with the positive (negative) phases of the AMO. This persistent relationship suggests that the AMO may have been a key driver of multidecadal winter temperature variations on the southeastern TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 2:200–209. doi:10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2

    Article  Google Scholar 

  • Bi Y, Xu J, Gebrekirstos A, Guo L, Zhao M, Liang E, Yang X (2015) Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, southwest China. Int J Climatol 35:4057–4065

    Article  Google Scholar 

  • Bräuning A, Mantwill B (2004) Summer temperature and summer monsoon history on the Tibetan plateau during the last 400 years recorded by tree rings. Geophys Res Lett. doi:10.1029/2004gl020793

    Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    Article  Google Scholar 

  • Büntgen U, Frank D, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453. doi:10.1111/j.1365-2486.2008.01640.x

    Article  Google Scholar 

  • Büntgen U, Wilson R, Wilmking M, Niedzwiedz T, Bräuning A (2009) The ‘divergence problem’ in tree-ring research. TRACE Tree Rings Archaeol Climatol Ecol 7:212–219

    Google Scholar 

  • Chen F, Yuan Y-J, Wei W-S, Yu S-L, Zhang T-W (2012) Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850: linkages to the Pacific Ocean. Theor Appl Climatol 109:141–151. doi:10.1007/s00704-011-0563-0

    Article  Google Scholar 

  • Chen F, Yuan Y, Wei W, Zhang T, Shang H, Yu S (2015) Divergent response of tree-ring width and maximum latewood density of Abies faxoniana to warming trends at the timberline of the western Qinling Mountains and northeastern Tibetan Plateau, China. Silva Fenn. doi:10.14214/sf.1155

    Google Scholar 

  • China Forest Editing Committee (ed) (2003) China forest: coniferous forests, vol 2. China Forestry Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Collins M, Osborn TJ, Tett SFB, Briffa KR, Schweingruber FH (2002) A comparison of the variability of a climate model with paleotemperature estimates from a network of tree-ring densities. J Clim 15:1497–1515

    Article  Google Scholar 

  • Cook ER, Kairiukstis L (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, New York

    Book  Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370

    Article  Google Scholar 

  • D’Arrigo RD, Yamaguchi DK, Wiles GC, Jacoby GD, Osawa A, Lawrence DM (1997) A kashiwa oak (Quercus dentata) tree-ring width chronology from northern coastal Hokkaido, Japan. Can J For Res 27:613–617

    Article  Google Scholar 

  • D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004a) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Glob Biogeochem Cycles 18:GB3021. doi:10.1029/2004GB002249

    Google Scholar 

  • D’Arrigo R, Mashig E, Frank D, Jacoby G, Wilson R (2004b) Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska. Geophys Res Lett 31:L09202. doi:10.1029/2004gl019756

    Google Scholar 

  • D’Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence Problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Change 60:289–305. doi:10.1016/j.gloplacha.2007.03.004

    Article  Google Scholar 

  • Duan Z (1997) Zhongdian chronicles. The Nationalities Publishing House of Yunnan, Kunming (in Chinese)

    Google Scholar 

  • Duan J, Zhang QB (2014) A 449 year warm season temperature reconstruction in the southeastern Tibetan Plateau and its relation to solar activity. Palaeogeogr Palaeoclimatol Palaeoecol 119:215–240

    Google Scholar 

  • Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of El Chichón and Pinatubo. Geophys Res Lett 19:2313–2316

    Article  Google Scholar 

  • Fan Z-X, Bräuning A, Cao K-F (2008a) Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings. Dendrochronologia 26:97–107. doi:10.1016/j.dendro.2008.01.003

    Article  Google Scholar 

  • Fan Z-X, Bräuning A, Cao K-F (2008b) Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. Int J Climatol 28:1879–1887. doi:10.1002/joc.1689

    Article  Google Scholar 

  • Fan Z-X, Bräuning A, Cao K-F, Zhu S-D (2009a) Growth–climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. For Ecol Manag 258:306–313. doi:10.1016/j.foreco.2009.04.017

    Article  Google Scholar 

  • Fan Z-X, Bräuning A, Yang B, Cao K-F (2009b) Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Glob Planet Change 65:1–11. doi:10.1016/j.gloplacha.2008.10.001

    Article  Google Scholar 

  • Fan Z-X, Bräuning A, Tian Q-H, Yang B, Cao K-F (2010) Tree ring recorded May–August temperature variations since A.D. 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 296:94–102. doi:10.1016/j.palaeo.2010.06.017

    Article  Google Scholar 

  • Fang K et al (2010) Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Clim Dyn 35:577–585. doi:10.1007/s00382-009-0636-2

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gou X, Chen F, Jacoby G, Cook E, Yang M, Peng H, Zhang Y (2007) Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int J Climatol 27:1497–1503. doi:10.1002/joc.1480

    Article  Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett. doi:10.1029/2004gl019932

    Google Scholar 

  • Guo G, Li Z-S, Zhang Q-B, Ma K-P, Mu C (2009) Dendroclimatological studies of Picea likiangensis and Tsuga dumosa in Lijiang, China. IAWA J 30:435–441

    Article  Google Scholar 

  • Guo MM, Zhang YD, Wang XC, Huang Q, Yang SX, Liu SR (2015) Effects of abrupt warming on main conifer tree rings in Markang, Sichuan, China. Acta Ecol Sin 35:7464–7474. doi:10.5846/stxb201404140715

    Google Scholar 

  • Guo B, Zhang Y, Wang X (2016) Response of Picea purpurea and Abies faxoniana tree rings at different slope aspects to rapid warming in western Sichuan, China. Chin J Appl Ecol 27:354–364. doi:10.13287/j.1001-9332.201602.034

    Google Scholar 

  • Harris I et al (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge. doi:10.1017/CBO9781107415324

    Google Scholar 

  • Jacoby GC, Darrigo RD (1995) Tree-ring width and density evidence of climatic and potential forest change in Alaska. Glob Biogeochem Cycles 9:227–234. doi:10.1029/95gb00321

    Article  Google Scholar 

  • Jacoby GC, Lovelius NV, Shumilov OI, Raspopov OM, Karbainov JM, Frank DC (2000) Long-term temperature trends and tree growth in the Taymir region of northern Siberia. Quat Res 53:312–318

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans 103:18567–18589. doi:10.1029/97jc01736

    Article  Google Scholar 

  • Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986. doi:10.1126/science.288.5473.1984

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett. doi:10.1029/2006gl026242

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115:445–459

    Article  Google Scholar 

  • Li S, Bates GT (2007) Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv Atmos Sci 24:126–135. doi:10.1007/s00376-007-0126-6

    Article  Google Scholar 

  • Li Q, Liu X, Zhang H (2004) Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv Atmos Sci 21:260–268

    Article  Google Scholar 

  • Li Q, Zhang H, Liu X, Chen J, Li W, Jones P (2009a) A mainland China homogenized historical temperature dataset of 1951–2004. Bull Am Meteorol Soc 90:1062–1065. doi:10.1175/2009BAMS2736.1

    Article  Google Scholar 

  • Li Z et al (2009b) Changes of some monsoonal temperate glaciers in Hengduan Mountains region during 1900–2007. Acta Geogr Sin 64:1319–1330 (in Chinese, with English abstract)

    Google Scholar 

  • Li Z-S, Liu G-H, Fu B-J, Zhang Q-B, Hu C-J, Luo S-Z (2010) Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China. Chin J Plant Ecol 34:1045–1057. doi:10.3773/j.issn.1005-264x.2010.09.005 (in Chinese, with English abstract)

    Google Scholar 

  • Li Z, Shi C, Liu Y, Zhang J, Zhang Q, Ma K (2011a) Winter drought variations based on tree-ring data in Gaoligong Mountain, northwestern Yunnan, China, A. D. 1795–2004. Pak J Bot 43:2469–2478

    Google Scholar 

  • Li Z, Shi CM, Liu Y, Zhang J, Zhang Q, Ma K (2011b) Summer mean temperature variation from 1710–2005 inferred from tree-ring data of the Baimang Snow Mountains, northwestern Yunnan, China. Clim Res 47:207–218. doi:10.3354/cr01012

    Article  Google Scholar 

  • Li Z-S, Zhang Q-B, Ma K (2012) Tree-ring reconstruction of summer temperature for A.D. 1475–2003 in the central Hengduan Mountains, Northwestern Yunnan, China. Clim Change 110:455–467. doi:10.1007/s10584-011-0111-z

    Article  Google Scholar 

  • Li M-Y, Wang L, Fan Z-X, Shen C-C (2015) Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 422:57–64. doi:10.1016/j.palaeo.2015.01.003

    Article  Google Scholar 

  • Li J, Shi J, Zhang DD, Yang B, Fang K, Yue PH (2016) Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim Dyn. doi:10.1007/s00382-016-3101-z

    Google Scholar 

  • Liang E, Shao X, Eckstein D, Huang L, Liu X (2006) Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. For Ecol Manag 236:268–277. doi:10.1016/j.foreco.2006.09.016

    Article  Google Scholar 

  • Mann ME et al (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260. doi:10.1126/science.1177303

    Article  Google Scholar 

  • Melvin TM, Briffa KR (2008) A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia 26:71–86

    Article  Google Scholar 

  • Michaelsen J (1987) Cross-validation in statistical climate forecast model. J Clim Appl Meteorol 26:1589–1600. doi:10.1175/1520-0450(1987)026<1589:cviscf>2.0.co;2

    Article  Google Scholar 

  • Muller RA et al (2013) Decadal variations in the global atmospheric land temperatures. J Geophys Res Atmos 118:5280–5286. doi:10.1002/jgrd.50458

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  Google Scholar 

  • Osborn T, Briffa K, Jones P (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochronologia 15:89–99

    Google Scholar 

  • PAGES 2K Network (2013) Continental-scale temperature variabilityduring the past two millennia. Nat Geosci 6:339–346. doi:10.1038/NGEO1797

    Article  Google Scholar 

  • Pallardy SG (2008) Physiology of woody plants, 3rd edn. Academic Press, Burlington

    Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia 22:7–29. doi:10.1016/j.dendro.2004.09.005

    Article  Google Scholar 

  • Shao X, Fan J (1999) Past climate on west Sichuan Plateau as reconstructed from ring-width of dragon spruce. Quat Sci 19(1):81–89 (in Chinese, with English abstract)

    Google Scholar 

  • Shi JF, Cook ER, Lu HY, Li JB, Wright WE, Li SF (2010) Tree-ring based winter temperature reconstruction for the lower reaches of the Yangtze River in southeast China. Clim Res 41:169–175. doi:10.3354/cr00851

    Article  Google Scholar 

  • Shi J, Li J, Cook ER, Zhang X, Lu H (2012) Growth response of Pinus tabulaeformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Clim Res 53:157–167. doi:10.3354/cr01098

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) Introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198

    Article  Google Scholar 

  • Tingley MP, Huybers P (2013) Recent temperature extremes at high northern latitudes unprecedented in the past 600 years. Nature 496:201–205. doi:10.1038/nature11969

    Article  Google Scholar 

  • Trouet V, van Oldenborgh GJ (2013) KNMI Climate Explorer: a web-based research tool for high-resolution paleoclimatology. Tree-Ring Res 69:3–13. doi:10.3959/1536-1098-69.1.3

    Article  Google Scholar 

  • Visser H, Molenaar J (1988) Kalman filter analysis in dendroclimatology. Biometrics 44:929–940

    Article  Google Scholar 

  • Wang Y (1996) An introduction to climate change in Yunnan province. China Meteorological Press, Beijing (in Chinese)

    Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian Monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res. doi:10.1029/2008jd010929

    Google Scholar 

  • Wang J, Yang B, Ljungqvist FC, Zhao Y (2013) The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. J Quat Sci 28:653–658. doi:10.1002/jqs.2658

    Article  Google Scholar 

  • Wang J, Yang B, Qin C, Kang S, He M, Wang Z (2014) Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Clim Dyn 43:627–640. doi:10.1007/s00382-013-1802-0

    Article  Google Scholar 

  • Wigley T, Briffa KR, Jones PD (1984) On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:otavoc>2.0.co;2

    Article  Google Scholar 

  • Wilson R et al (2016) Last millennium northern hemisphere summer temperatures from tree rings: part I: the long term context. Quatern Sci Rev 134:1–18. doi:10.1016/j.quascirev.2015.12.005

    Article  Google Scholar 

  • Wu X, Lin Z (1983) The climatic change and tree-ring analysis in the Hsiao Zhongdian area of the Yunnan province. In: Sun H, Li W, Cheng H, Kong Z, Sun G, Zhang R, Zhang L, Zhang Y, Tong W, Su Z, Li J, Li Z, Zong G, Lin Y, Zhao E, Wu S, Gao Y, Gao D, Gao L, Tang B, Guo C, Cao W, Wen J, Pan Y, Wei J (eds) Special issue of Hengduan Mountains scientific expedition, vol 1. The Peoples Press of Yunnan, Kunming, pp 206–213 (in Chinese, with English abstract)

  • Wu X, Zhao Z (1991) Tree-ring width and climatic change in China. Quatern Sci Rev 10:545–549

    Article  Google Scholar 

  • Wu X, Lin Z, Sun L (1988) A preliminary study on the climatic change of the Hengduan Mountains area since 1600 A.D. Adv Atmos Sci 5:437–443. doi:10.1007/BF02656789

    Article  Google Scholar 

  • Wu P, Wang L, Huang L (2006) A preliminary study on the tree-ring sensitivity to climate change of five endemic conifer species in China. Geogr Res 25:43–52 (in Chinese, with English abstract)

    Google Scholar 

  • Xie M-E, Cheng J-G (2004) Characteristics and formation mechanism of weather disasters in Yunnan Province. Sci Geogr Sin 24:721–726 (in Chinese, with English abstract)

    Google Scholar 

  • Yang Z (2015) Shangri-La regional atmospheric background station and Shangri-La County AWS ground data analyzed. Henan Sci Technol 10:145–149 (in Chinease, with English abstract)

    Google Scholar 

  • Yonenobu H, Eckstein D (2006) Reconstruction of early spring temperature for central Japan from the tree-ring widths of Hinoki cypress and its verification by other proxy records. Geophys Res Lett. doi:10.1029/2006gl026170

    Google Scholar 

  • Zhao Z, Tan L, Kang D, Liu Q, Li J (2012) Responses of Picea likiangensis radial growth to climate change in the Small Zhongdian area of Yunnan Province, Southwest China. Chin J Appl Ecol 23:603–609 (in Chinese with English abstract)

    Google Scholar 

  • Zhou Y, Zheng D (1999) Monte Carlo simulation test of correlation significance levels. Acta Geodaetica Cartogr Sin 28:313–318 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

The authors thank Yanwu Shi and Lingling Li for their help in the laboratory, Bao Yang, Jianping Duan, Zexin Fan and Zongshan Li for sharing their reconstructed temperature data, Jade d’Alpoim Guedes for improving the language, and three anonymous reviewers for their constructive comments. This research was funded by the Research Grants Council of Hong Kong (No. 27300514), the National Science Foundation of China (No. 41271210), the National Key R&D program of China (No. 2016YFA0600503), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Shi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Li, J., Shi, J. et al. Three centuries of winter temperature change on the southeastern Tibetan Plateau and its relationship with the Atlantic Multidecadal Oscillation. Clim Dyn 49, 1305–1319 (2017). https://doi.org/10.1007/s00382-016-3381-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3381-3

Keywords

Navigation