Skip to main content

Advertisement

Log in

Using joint probability distribution functions to evaluate simulations of precipitation, cloud fraction and insolation in the North America Regional Climate Change Assessment Program (NARCCAP)

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study evaluates model fidelity in simulating relationships between seasonally averaged precipitation, cloud fraction and surface insolation from the North American Regional Climate Change Assessment Project (NARCCAP) hindcast using observational data from ground stations and satellites. Model fidelity is measured in terms of the temporal correlation coefficients between these three variables and the similarity between the observed and simulated joint probability distribution functions (JPDFs) in 14 subregions over the conterminous United States. Observations exhibit strong negative correlations between precipitation/cloud fraction and surface insolation for all seasons, whereas the relationship between precipitation and cloud fraction varies according to regions and seasons. The skill in capturing these observed relationships varies widely among the NARCCAP regional climate models, especially in the Midwest and Southeast coast regions where observations show weak (or even negative) correlations between precipitation and cloud fraction in winter due to frequent non-precipitating stratiform clouds. Quantitative comparison of univariate and JPDFs indicates that model performance varies markedly between regions as well as seasons. This study also shows that comparison of JPDFs is useful for summarizing the performance of and highlighting problems with some models in simulating cloud fraction and surface insolation. Our quantitative metric may be useful in improving climate models by highlighting shortcomings in the formulations related with the physical processes involved in precipitation, clouds and radiation or other multivariate processes in the climate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4(6):1147–1167. doi:10.1175/1525-7541

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Tank AMGK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(D5). doi:10.1029/2005jd006290

  • Bishop JKB, Rossow WB (1991) Spatial and temporal variability of global surface solar irradiance. J Geophys Res Oceans 96(C9):16839–16858. doi:10.1029/91jc01754

    Article  Google Scholar 

  • Changnon SA, Huff FA (1957) Cloud distribution and correlation with precipitation in Illinois, Report of Investigation33, Illinois State Water Survey

  • Crichton DJ, Mattmann CA, Cinquini L, Braverman A, Waliser D, Gunson M, Hart AF, Goodale CE, Lean P, Kim J (2012) Sharing satellite observations with the climate-modeling community: software and architecture. IEEE Softw 29(5):73–81

    Article  Google Scholar 

  • Durman CF, Gregory JM, Hassell DC, Jones RG, Murphy JM (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Q J R Meteorol Soc 127(573):1005–1015. doi:10.1256/Smsqj.57315

    Article  Google Scholar 

  • Frei C, Christensen JH, Deque M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res Atmos 108(D3). doi:10.1029/2002jd002287

  • Fu Q, Liou KN (1993) Parameterization of the radiative properties of cirrus clouds. J Atmos Sci 50(13):2008–2025. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117(11):2325–2347. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Giorgi F, Brodeur CS, Bates GT (1994) Regional climate-change scenarios over the United-States produced with a nested regional climate model. J Clim 7(3):375–399. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10(2):288–296. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Gupta SK, Ritchey NA, Wilber AC, Whitlock CH, Gibson GG, Stackhouse PW (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12(8):2691–2710. doi:10.1175/1520-0442

    Article  Google Scholar 

  • Hart AF, Goodale CE, Mattmann CA, Zimdars P, Crichton D, Lean P, Kim J, Walise D (2011) A cloud-enabled regional climate model evaluation system. In: 2nd international workshop on software engineering for cloud computing, SECLOUD’11, Co-located with ICSE 2011, Waikiki, Honolulu, HI, pp 43–49

  • Higgins RW, Shi W, Yarosh E (2000) Improved United States precipitation quality control system and analysis. NCEP/Climate Prediction Center Atlas 7. National Centers for Environmental Prediction

  • Hinkelman LM, Stackhouse PW, Wielicki BA, Zhang TP, Wilson SR (2009) Surface insolation trends from satellite and ground measurements: comparisons and challenges. J Geophys Res Atmos 114. doi:10.1029/2008jd011004

  • Hogg RV, Tanis EA (2010) Probability and statistical inference, 8th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Gu GJ, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55. doi:10.1175/Jhm560.1

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) Ncep-Doe Amip-Ii reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643. doi:10.1175/Bams-83-11-1631

    Article  Google Scholar 

  • Kim J (2002) Precipitation variability associated with the North American Monsoon in the 20th century. Geophys Res Lett 29(13). doi:10.1029/2001gl014316

  • Kim J, Lee JE (2003) A multiyear regional climate hindcast for the Western United States using the mesoscale atmospheric simulation model. J Hydrometeorol 4(5):878–890. doi:10.1175/1525-7541

    Article  Google Scholar 

  • Kim J, Gu Y, Liou KN, Park RJ, Song CK (2012) Direct and semi-direct radiative effects of anthropogenic aerosols in the Western United States: seasonal and geographical variations according to regional climate characteristics. Clim Change 111(3–4):859–877. doi:10.1007/s10584-011-0169-7

    Article  Google Scholar 

  • Kim J, Waliser DE, Mattmann CA, Mearns LO, Goodale CE, Hart AF, Crichton DJ, McGinnis S, Lee H-K, Loikith PC, Boustani M (2013a) Evaluation of the surface air temperature, precipitation, and insolation over the conterminous U.S. in the NARCCAP multi-RCM hindcast experiment using RCMES. J Clim. doi:10.1175/JCLI-D-12-00452.1

  • Kim J et al (2013b) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn. doi:10.1007/s00382-013-1751-7

    Google Scholar 

  • Kim J, Waliser DE, Neiman PJ, Guan B, Ryoo JM, Wick GA (2013c) Effects of atmospheric river landfalls on the cold season precipitation in California. Clim Dyn 40(1–2):465–474. doi:10.1007/s00382-012-1322-3

    Article  Google Scholar 

  • Kyriakidis PC, Kim J, Miller NL (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics. J Appl Meteorol 40(11):1855–1877. doi:10.1175/1520-0450

    Article  Google Scholar 

  • Lee H, Youn D, Patten KO, Olsen SC, Wuebbles DJ (2012) Diagnostic tools for evaluating quasi-horizontal transport in global-scale chemistry models. J Geophys Res Atmos 117. doi:10.1029/2012jd017644

  • Li LF, Li WH, Kushnir Y (2012) Variation of the North Atlantic subtropical high western ridge and its implication to Southeastern US summer precipitation. Clim Dyn 39(6):1401–1412. doi:10.1007/S00382-011-1214-Y

    Article  Google Scholar 

  • Li JLF, Waliser DE, Stephens G, Lee S, L’Ecuyer T, Kato S, Loeb N, Ma HY (2013) Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J Geophys Res Atmos 118(15):8166–8184. doi:10.1002/Jgrd.50378

    Article  Google Scholar 

  • Liang XZ, Pan JP, Zhu JH, Kunkel KE, Wang JXL, Dai A (2006) Regional climate model downscaling of the U.S. summer climate and future change. J Geophys Res Atmos 111(D10). doi:10.1029/2005jd006685

  • Liu Y, Wu W, Jensen MP, Toto T (2011) Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo. Atmos Chem Phys 11(14):7155–7170. doi:10.5194/Acp-11-7155-2011

    Article  Google Scholar 

  • Mattmann C, Waliser D, Kim J, Goodale C, Hart A, Ramirez P, Crichton D, Zimdars P, Boustani M, Lee H., Loikith, P, Whitehall K, Jack C, Hewitson B (2013) Cloud computing and virtualization within the regional climate model and evaluation system. Earth Sci Inf 7(1):1–12. http://link.springer.com/article/10.1007%2Fs12145-013-0126-2

  • Loikith PC, Lintner BR, Kim J, Lee H, Neelin JD, Waliser DE (2013) Classifying reanalysis surface temperature probability density functions (PDFs) over North America with cluster analysis. Geophys Res Lett 40(14):3710–3714. doi:10.1002/Grl.50688

    Article  Google Scholar 

  • Matsuura K and C Willmott (2009) Terrestrial air temperature and precipitation: 1900–2008 gridded monthly time series (V2.01). Center for Climatic Research, Department of Geography, University of Delaware. http://climate.geog.udel.edu/~climate/html_pages/archive.html

  • Mearns LO, Arritt R, Biner S, Bukovsky MS, McGinnis S, Sain S, Caya D, Correia J, Flory D, Gutowski W, Takle ES, Jones R, Leung R, Moufouma-Okia W, McDaniel L, Nunes AMB, Qian Y, Roads J, Sloan L, Snyder M (2012) The North American Regional Climate Change Assessment Program overview of phase I results. Bull Am Meteorol Soc 93(9):1337–1362

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi:10.1002/Joc.1181

    Article  Google Scholar 

  • Morrison H, Gettleman A (2008) A new two-moment stratiform cloud microphysics scheme in the Community Atmospheric Model version 3 (CAM3). Part I: description and numerical tests. J Clim 21:3642–3659

    Article  Google Scholar 

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20(17):4356–4376. doi:10.1175/Jcli4253.1

    Article  Google Scholar 

  • Richards F, Arkin P (1981) On the relationship between satellite-observed cloud cover and precipitation. Mon Weather Rev 109(5):1081–1093. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Rossow WB, Duenas EN (2004) The International Satellite Cloud Climatology Project (ISCCP) web site—an online resource for research. Bull Am Meteorol Soc 85(2):167–172. doi:10.1175/Bams-85-2-167

    Article  Google Scholar 

  • Rummukainen M (2010) State-of-the-art with regional climate models. Wires Clim Change 1(1):82–96. doi:10.1002/Wcc.008

    Article  Google Scholar 

  • Rutledge SA, Hobbs PV (1983) The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. 8. A model for the seeder–feeder process in warm-frontal rainbands. J Atmos Sci 40(5):1185–1206. doi:10.1175/1520-0469

    Article  Google Scholar 

  • Silverman BW (1998) Density estimation for statistics and data analysis. Monographs on statistics and applied probability, vol 26. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Solomon S, Intergovernmental Panel on Climate Change., Intergovernmental Panel on Climate Change. Working Group I (2007) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Soni VK, Pandithurai G, Pai DS (2012) Evaluation of long-term changes of solar radiation in India. Int J Climatol 32(4):540–551. doi:10.1002/Joc.2294

    Article  Google Scholar 

  • Sparling LC (2000) Statistical perspectives on stratospheric transport. Rev Geophys 38(3):417–436

    Article  Google Scholar 

  • Stackhouse Jr PW, Gupta SK, Cox SJ, Mikovitz JC, Zhang T, Hinkelman LM (2011) The NASA/GEWEX surface radiation budget release 3.0: 24.5-year dataset. GEWEX News 21 No. 1

  • Stephens GL, Vane DG, Boain RJ, Mace GG, Sassen K, Wang ZE, Illingworth AJ, O’Connor EJ, Rossow WB, Durden SL, Miller SD, Austin RT, Benedetti A, Mitrescu C, Team CS (2002) The cloudsat mission and the a-train—A new dimension of space-based observations of clouds and precipitation. Bull Am Meteorol Soc 83(12):1771–1790. doi:10.1175/Bams-83-12-1771

    Article  Google Scholar 

  • U.S. Global Change Research Program (2009) Global climate change impacts in the United States: a state of knowledge report. Cambridge University Press, Cambridge

    Google Scholar 

  • Waliser DE, Li JLF, Woods CP, Austin RT, Bacmeister J, Chern J, Del Genio A, Jiang JH, Kuang ZM, Meng H, Minnis P, Platnick S, Rossow WB, Stephens GL, Sun-Mack S, Tao WK, Tompkins AM, Vane DG, Walker C, Wu D (2009) Cloud ice: a climate model challenge with signs and expectations of progress. J Geophys Res Atmos 114. doi:10.1029/2008jd010015

  • Waliser DE, Li JLF, L’Ecuyer TS, Chen WT (2011) The impact of precipitating ice and snow on the radiation balance in global climate models. Geophys Res Lett 38. doi:10.1029/2010gl046478

  • Wang SY, Gillies RR, Takle ES, Gutowski WJ (2009) Evaluation of precipitation in the intermountain region as simulated by the NARCCAP regional climate models. Geophys Res Lett 36. doi:10.1029/2009gl037930

  • Weare BC (2004) A comparison of AMIP II model cloud layer properties with ISCCP D2 estimates. Clim Dyn 22(2–3):281–292. doi:10.1007/S00382-003-0374-9

    Article  Google Scholar 

  • Wehner MF (2013) Very extreme seasonal precipitation in the NARCCAP ensemble: model performance and projections. Clim Dyn 40(1–2):59–80. doi:10.1007/s00382-012-1393-1

    Article  Google Scholar 

  • Weller GB, Cooley DS, Sain SR (2012) An investigation of the pineapple express phenomenon via bivariate extreme value theory. Environmetrics 23(5):420–439. doi:10.1002/Env.2143

    Article  Google Scholar 

  • Weller GB, Cooley D, Sain SR, Bukovsky MS, Mearns LO (2013) Two case studies on NARCCAP precipitation extremes. J Geophys Res Atmos 118(18):10475–10489. doi:10.1002/Jgrd.50824

    Article  Google Scholar 

  • Whitehall et al (2012) Building model evaluation and decision support capacity for CORDEX. WMO Bull 61(2):29–34

    Google Scholar 

  • Winker DM, Hunt WH, McGill MJ (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34(19). doi:10.1029/2007gl030135

Download references

Acknowledgments

The contributions by H.K., D.E.W., P.C.L. and C.A.M. to this study were carried out on behalf of the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This research was funded by NASA National Climate Assessment 11-NCA11-0028 and AIST AIST-QRS-12-0002 projects, and the NSF ExArch 1125798 (P.C.L., J.K., H.L., and D.E.W).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huikyo Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1717 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, J., Waliser, D.E. et al. Using joint probability distribution functions to evaluate simulations of precipitation, cloud fraction and insolation in the North America Regional Climate Change Assessment Program (NARCCAP). Clim Dyn 45, 309–323 (2015). https://doi.org/10.1007/s00382-014-2253-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2253-y

Keywords

Navigation