Skip to main content

Advertisement

Log in

Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61–9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by ~23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~8 %) and net primary productivity (~3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ammann CM, Washington WM, Meehl GA, Buja L, Teng H (2010) Climate engineering through artificial enhancement of natural forcings: magnitudes and implied consequences. J Geophys Res 115:D22109. doi:10.1029/2009JD012878

    Article  Google Scholar 

  • Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Clim 22:2557–2570. doi:10.1175/2008JCLI2759.1

    Article  Google Scholar 

  • Armour Kyle C, Bitz MC, Roe GH (2012) Time-varying climate sensitivity from regional feedbacks. J Clim 26:4518–4534. doi:10.1175/JCLI-D-12-00544.1

    Article  Google Scholar 

  • Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105:7664–7669. doi:10.1073/pnas.0711648105

    Article  Google Scholar 

  • Bala G, Caldeira K, Nemani R (2009) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35:423–434. doi:10.1007/s00382-009-0583-y

    Article  Google Scholar 

  • Bala G, Caldeira K, Nemani R, Cao L, Ban-Weiss G, Shin HJ (2010) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn 37(5–6):915–931. doi:10.1007/s00382-010-0868-1

    Google Scholar 

  • Bluth GJS, Rose WI, Sprod IE, Krueger AJ (1997) Stratospheric loading of sulfur from explosive volcanic eruptions. J Geol 105:671–683

    Article  Google Scholar 

  • Brovkin V, Petoukhov V, Claussen M, Bauer E, Archer D, Jaeger CC (2008) Geoengineering climate by stratospheric sulfur injections: earth system vulnerability to technological failure. Clim Chang 92:243–259. doi:10.1007/s10584-008-9490

    Article  Google Scholar 

  • Budkyo MI (1974) Climate and life. Academic Press, New York

    Google Scholar 

  • Caldeira K, Wood L (2008) Global and Arctic climate engineering: numerical model studies. Philos T R Soc A 366:4039–4056. doi:10.1098/rsta.2008.0132

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B, Bitz C, Lin SJ, Zhang M, Dai Y (2004) Description of the NCAR community atmosphere model (CAM 3.0) NCAR Tech. Rep. NCAR/TN-464 + STR National Center for Atmospheric Research, Boulder CO

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Chang 77:211–220. doi:10.1007/s10584-006-9101-y

    Article  Google Scholar 

  • Davidoff Daniel B, Hintsa Eric J, Anderson James G, Keith David W (1999) The effect of climate change on ozone depletion through changes in stratospheric water vapour. Nature 402:399–401. doi:10.1038/46521

    Article  Google Scholar 

  • Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998. doi:10.1126/science.1080681

    Article  Google Scholar 

  • Ferraro AJ, Highwood EJ, Charlton-Perez AJ (2011) Stratospheric heating by potential geoengineering aerosols. Geophys Res Lett 38:L24706. doi:10.1029/2011GL049761

    Article  Google Scholar 

  • Ferraro AJ, Highwood EJ, Charlton-Perez AJ (2014) Weakened tropical circulation and reduced precipitation in response to geoengineering. Environ Res Lett 9:014001. doi:10.1088/1748-9326/9/1/014001

    Article  Google Scholar 

  • Fyfe J, Cole J, Arora V, Scinocca J (2013) Biogeochemical carbon coupling influences global precipitation in geoengineering experiments. Geophys Res Lett 40:651–655. doi:10.1002/grl.50166

    Article  Google Scholar 

  • Govindasamy B, Caldeira K (2000) Geoengineering earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27:2141–2144. doi:10.1029/1999GL006086

    Article  Google Scholar 

  • Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29(22):2061. doi:10.1029/2002GL015911

    Article  Google Scholar 

  • Govindasamy B, Caldeira K, Duffy PB (2003) Geoengineering earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Glob Planet Chang 37(1–2):157–168

    Article  Google Scholar 

  • Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107(D6). doi:10.1029/2001JD001242

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption, enhanced photosynthesis. Science 299(5615):2035–2038. doi:10.1126/science.1078366

    Article  Google Scholar 

  • Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102(D6):6831–6864. doi:10.1029/96JD03436

    Article  Google Scholar 

  • Harvey D (2000) Global warming. Pearson Education Limited, London

    Google Scholar 

  • Heckendorn P, Weisenstein D, Fueglistaler S, Luo BP, Rozanov E, Schraner M, Thomason LW, Peter T (2009) The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ Res Lett 4:045108. doi:10.1088/1748-9326/4/4/045108

    Article  Google Scholar 

  • Jones A, Haywood J, Boucher O (2011) A comparison of the climate impacts of geoengineering by stratospheric SO2 injection and by brightening of marine stratocumulus cloud. Atmos Sci Lett 12:176–183. doi:10.1002/asl.29

    Article  Google Scholar 

  • Jones A et al (2013) The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the geoengineering model intercomparison project (GeoMIP). J Geophys Res Atmos 118(17):9743–9752. doi:10.1002/jgrd.50762

    Article  Google Scholar 

  • Kanniah KD, Beringer J, North P, Hutley L (2011) Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: a review. Progr Phys Geogr 1–29. doi:10.1177/0309133311434244

  • Keith DW (2000) Geoengineering the climate: history and prospect. Annu Rev Energ Env 25:245–284. doi:10.1146/annurev.energy.25.1.245

    Article  Google Scholar 

  • Knohl A, Baldocchi DD (2008) Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J Geophys Res 113:G02023. doi:10.1029/2007JG000663

    Article  Google Scholar 

  • Kravitz B, Robock A, Boucher O, Schmidt H, Taylor KE, Stenchikov G, Schulz M (2011) The geoengineering model intercomparison project (GeoMIP). Atmos Sci Lett 12:162–167. doi:10.1002/asl.316

    Article  Google Scholar 

  • Kravitz B, MacMartin DG, Caldeira K (2012) Geoengineering: whiter skies? Geophys Res Lett 39:L11801. doi:10.1029/2012GL051652

    Article  Google Scholar 

  • Kravitz B et al (2013) Climate model response from the geoengineering model intercomparison project (GeoMIP). J Geophys Res Atmos 118:8320–8331. doi:10.1002/jgrd.50646

    Article  Google Scholar 

  • Lunt DJ, Ridgwell A, Valdes PJ, Seale A (2008) ‘Sunshade world’: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett 35:L12710. doi:10.1029/2008GL033674

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2007) Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci USA 104:9949–9954. doi:10.1073/pnas.0700419104

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M et al (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017. doi:10.1038/nature07949

    Article  Google Scholar 

  • Modak A, Bala G (2013) Sensitivity of simulated climate to latitudinal distribution of solar insolation reduction in SRM geoengineering methods. Atmos Chem Phys Discuss 13:25387–25415. doi:10.5194/acpd-13-25387-2013

    Article  Google Scholar 

  • Naik V, Wuebbles DJ, Foley J (2003) Influence of geoengineered climate on the biosphere. EOS Transactions AGU 82(47) AGU Fall Meeting

  • Niemeier U, Schmidt H, Alterskjær K, Kristjánsson JE (2013) Solar irradiance reduction via climate engineering: impact of different techniques on the energy balance and the hydrological cycle. J Geophys Res Atmos 118:11. doi:10.1002/2013JD020445

    Article  Google Scholar 

  • Oliveira PJC, Davin EL, Levis S, Seneviratne SI (2011) Vegetation-mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Global Chang Biol 17(11):3453–3467. doi:10.1111/j.1365-2486.2011.02506.x

    Article  Google Scholar 

  • Pongratz J, Lobell DB, Cao L, Caldeira K (2012) Crop yields in a geoengineered climate. Nat Clim Chang 2:101. doi:10.1038/NCLIMATE1373

    Article  Google Scholar 

  • Rasch et al (2008a) An overview of geoengineering of climate using stratospheric sulphate aerosols. Phil Trans R Soc A 366:4007–4037. doi:10.1098/rsta.2008.013

    Article  Google Scholar 

  • Rasch PJ, Crutzen PJ, Coleman DB (2008b) Exploring the geoengineering of climate using stratospheric sulphate aerosols: the role of particle size. Geophys Res Lett 35:L02809. doi:10.1029/2007GL032179

    Article  Google Scholar 

  • Ricke KL, Granger Morgan M, Allen MR (2010) Regional climate response to solar-radiation management. Nat Geosci 3:537–541.doi:10.1038/ngeo915

    Article  Google Scholar 

  • Robock (2008) 20 Reasons why geoengineering may be a bad idea. Bull At Sci 64(2):14–18, 59. doi:10.2968/064002006

  • Robock A, Oman L, Stenchikov GL (2008) Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J Geophys Res 113:D16101. doi:10.1029/2008JD010050

    Article  Google Scholar 

  • Roderick ML, Farquhar GD, Berry SL, Noble IR (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30. doi:10.1007/s004420100760

    Article  Google Scholar 

  • Schmidt H et al (2012) Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four earth system models. Earth Syst Dyn 3:63–78. doi:10.5194/esd-3-63-2012

    Article  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37:275–316

    Article  Google Scholar 

  • Stenchikov GL, Kirchner I, Robock A, Graf HF, Antuna JC, Grainger RG, Lambert A, Thomason L (1998) Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J Geophys Res Atmos 103(D12):13837–13857. doi:10.1029/98JD00693

    Article  Google Scholar 

  • IPCC (2013) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • The Royal Society (2009) Geoengineering the climate: science, governance and uncertainty

  • Tilmes S, Garcia RR, Kinnison DE, Gettelman A, Rasch PJ (2009) Impact of geoengineered aerosols on the troposphere and stratosphere. J Geophys Res 114:D12305. doi:10.1029/2008JD011420

    Article  Google Scholar 

  • Tilmes S et al (2013) The hydrologic impact of geoengineering in the geoengineering model intercomparison project (GeoMIP). J Geophys Res Atmos 118(11036–11):058. doi:10.1002/jgrd.50868

    Google Scholar 

  • Zwiers F, von Storch H (1995) Taking serial correlation into account in tests of the mean. J Clim 8:336–351

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Divecha Centre for Climate Change, Indian Institute of Science and the Department of Science and Technology (DST). Computational support from the Supercomputing Education and Research (SERC) and Mandhan cluster at the Center for Atmospheric and Oceanic Sciences supported by a FIST grant from DST is acknowledged. We also thank Prof. J. Srinivasan of Divecha Center for Climate Change for his valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirisha Kalidindi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalidindi, S., Bala, G., Modak, A. et al. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols. Clim Dyn 44, 2909–2925 (2015). https://doi.org/10.1007/s00382-014-2240-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2240-3

Keywords

Navigation