Skip to main content

Advertisement

Log in

Boreal summer intraseasonal variability simulated in the NCEP climate forecast system: insights from moist static energy budget and sensitivity to convective moistening

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The NCEP Climate Forecast System (CFS) with the relaxed Arakawa Schubert (RAS, hereafter referred to as CTRL) convection scheme of Moorthi and Suarez exhibits better performance in representing boreal summer tropical intraseasonal variability as compared with a simulation using simplified Arakawa–Schubert scheme. The intraseasonal moist static energy (MSE) budget is analyzed in this version of the CFS model (CTRL), which produces realistic eastward and northward propagation characteristics. The moist and thermodynamic processes involved in the maintenance and propagation of the poleward moving intraseasonal oscillation (ISO) disturbances are examined here. Budget diagnostics show that horizontal MSE advection is the principal component of the budget, contributing to the poleward movement of the convection. The injection of MSE moistens the atmosphere north of the convective area causing the poleward movement of convection by destabilization of the atmosphere. The moistening process is mainly contributed by the climatological wind acting on the anomalous moisture gradient as confirmed from the examination of moisture advection equation. While surface enthalpy fluxes (consisting of radiative and surface turbulent heat fluxes) maintain the ISO anomalies, they oppose the MSE tendency due to horizontal advection thus regulating the poleward propagation characteristics. In addition, the model results show that wind–evaporation feedback dominates over cloud–radiation feedback for ISO propagation; this is in contrast to our estimates using the newly available European Centre for Medium Range Weather Forecasts Interim reanalysis. Sensitivity experiments suggest that intraseasonal variability in the CFS model with the RAS scheme is highly sensitive to the parameterization of both the shallow convection and the convective rain evaporation and downdrafts. Removal of these components adversely affects the propagation characteristics and greatly reduces the amplitude of intraseasonal variability. Our results support the primary importance of the moisture preconditioning ahead of the ISO and the physical relationship between moisture and precipitation. For realistic ISO simulations, models need to represent these features appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ajayamohan RS, Goswami BN (2007) Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J Atmos Sci 64:460–478

    Article  Google Scholar 

  • Ajayamohan RS, Annamalai H, Luo JJ, Hafner J, Yamagata T (2010) Poleward propagation of boreal summer intraseasonal oscillations in a coupled model: role of internal process. Clim Dyn 37:851–867

    Article  Google Scholar 

  • Andersen JA, Kuang Z (2012) Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J Clim 25:2782–2804

    Article  Google Scholar 

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Back LE, Bretherton CS (2006) Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys Res Lett 33:L17810. doi:10.1029/2006GL026672

    Article  Google Scholar 

  • Benedict JJ, Randall DA (2007) Observed characteristics of the MJO relative to maximum rainfall. J Atmos Sci 64:2332–2354

    Article  Google Scholar 

  • Berrisford P, Dee D, Fielding K, Fuentes M, Kallberg P, Kobayashi S, Uppala S (2009) The ERA-interim archive. ERA report series 1, 16 pp

  • Bhat GS, Vecchi GA, Gadgil S (2004) Sea surface temperature of the Bay of Bengal derived from the TRMM microwave imager. J Atmos Ocean Technol 21:1283–1290

    Article  Google Scholar 

  • Boos WR, Kuang Z (2010) Mechanisms of poleward propagating, intraseasonal convective anomalies in cloud system-resolving models. J Atmos Sci 67:3673–3691

    Article  Google Scholar 

  • Boyle J, Klein S, Zhang G, Xie S, Wei X (2008) Climate model forecast experiments for TOGA COARE. Mon Weather Rev 136:808–832

    Article  Google Scholar 

  • Bretherton CS, Peters ME, Back LE (2004) Relationships between water vapor path and precipitable water over the tropical oceans. J Clim 17:1517–1528

    Article  Google Scholar 

  • Byun YH, Hong SY (2004) Impact of boundary layer processes on simulated tropical rainfall. J Clim 17:4032–4044

    Article  Google Scholar 

  • Cheng MD (1989) Effects of downdrafts and mesoscale convective organizations on heat and moisture budget of tropical cloud clusters. Part II: effects of convective-scale downdrafts. J Atmos Sci 46:1517–1564

    Article  Google Scholar 

  • Chou C, Hsueh YC (2010) Mechanisms of northward-propagating intraseasonal oscillation—a comparison between the Indian Ocean and the Western North Pacific. J Clim 23:6624–6640

    Article  Google Scholar 

  • Duchon C (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022

    Article  Google Scholar 

  • Emanuel KA (1987) An air-sea interaction model of intraseasonal oscillations in the tropics. J Atmos Sci 44:2324–2340

    Article  Google Scholar 

  • Fu X, Wang B (2009) Critical roles of the stratiform rainfall in sustaining the Madden–Julian oscillation: GCM experiments. J Clim 22:3939–3959

    Article  Google Scholar 

  • Fu X, Wang B, Li T, McCreary J (2003) Coupling between northward propagating intraseasonal oscillations and sea-surface temperature in the Indian Ocean. J Atmos Sci 60(15):1733–1753

    Article  Google Scholar 

  • Goswami BN (2005) South Asian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability in the atmosphere-ocean climate system. Praxis Springer, Berlin, pp 19–61

    Chapter  Google Scholar 

  • Goswami BN, Shukla J (1984) Quasi-periodic oscillations in a symmetric general circulation model. J Atmos Sci 41:20–37

    Article  Google Scholar 

  • Hendon HH, Glick J (1997) Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans. J Clim 10:647–661

    Article  Google Scholar 

  • Holton JR (1982) An introduction to dynamic meteorology. Academic Press, Dublin

    Google Scholar 

  • Huffman GJ, Adler RF, Morrissey M, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multi-satellite observations. J Hydrometeor 2:36–50

    Article  Google Scholar 

  • Inness P, Slingo J (2003) Simulation of the Madden–Julian oscillation in a coupled general circulation model. Part I: comparison with observations and an atmosphere-only GCM. J Clim 16:345–364

    Article  Google Scholar 

  • Jiang X, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • John VO, Soden BJ (2007) Temperature and humidity biases in global climate models and their impact on climate feedbacks. Geophys Res Lett 34:L18704. doi:10.1029/2007GL030429

    Article  Google Scholar 

  • Johnson RH (1976) Role of convective-scale precipitation downdrafts in cumulus and synoptic-scale interactions. J Atmos Sci 33:1890–1910

    Article  Google Scholar 

  • Johnson RH, Rickenbach TM, Rutledge SA, Ciesielski PE, Schubert WH (1999) Trimodal characteristics of tropical convection. J Clim 12:2397–2418

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kao CYJ, Ogura Y (1987) Response of cumulus clouds to large-scale forcing using the Arakawa–Schubert cumulus parameterization. J Atmos Sci 44:2437–2458

    Article  Google Scholar 

  • Kemball-Cook SR, Wang B (2001) Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J Clim 14:2923–2942

    Article  Google Scholar 

  • Kemball-Cook SR, Weare BC (2001) The onset of convection in the Madden–Julian oscillation. J Clim 14:780–793

    Article  Google Scholar 

  • Kemball-Cook SR, Wang B, Fu X (2002) Simulation of the intraseasonal oscillation in the ECHAM-4 model: impact of coupling with an ocean model. J Atmos Sci 59:1433–1453

    Article  Google Scholar 

  • Khouider B, Majda AJ (2006) A simple multicloud parameterization for convectively coupled tropical waves. Part I: linear analysis. J Atmos Sci 63:1308–1323

    Article  Google Scholar 

  • Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geophys Res Lett 31:L10101. doi:10.1029/2004GL019601

    Article  Google Scholar 

  • Kiladis GN, Straub KH, Haertel PT (2005) Zonal and vertical structure of the Madden–Julian oscillation. J Atmos Sci 62:2790–2809

    Article  Google Scholar 

  • Kiladis GN, Wheeler MC, Haertel PT, Straub KH, Roundy PE (2009) Convectively coupled equatorial waves. Rev Geophys 47:RG2003. doi:10.1029/2008RG000266

    Article  Google Scholar 

  • Kiranmayi L, Maloney ED (2011) Intraseasonal moist static energy budget in reanalysis data. J Geophys Res 116:D21117. doi:10.1029/2011JD016031

    Article  Google Scholar 

  • Krishnan R, Zhang C, Sugi M (2000) Dynamics of breaks in the Indian summer monsoon. J Atmos Sci 57:1354–1372

    Article  Google Scholar 

  • Lau KM, Chan PH (1986) Aspects of the 40–50 day oscillation during the northern summer as inferred from the outgoing longwave radiation. Mon Weather Rev 114:1354–1367

    Article  Google Scholar 

  • Lau KM, Peng L (1990) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: monsoon dynamics. J Atmos Sci 47:1443–1462

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Lin JL, Mapes BE (2004) Radiation budget of the tropical intraseasonal oscillation. J Atmos Sci 61:2050–2062

    Article  Google Scholar 

  • Lin JL et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Lin JL, Weickman KM, Kiladis GN, Mapes BE, Schubert SD, Suarez MJ, Bacmeister JT, Lee MI (2008) Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Clim 21:4541–4567

    Article  Google Scholar 

  • Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837

    Article  Google Scholar 

  • Maloney ED (2009) The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J Clim 22:711–729

    Article  Google Scholar 

  • Maloney ED, Hartmann DL (2001) The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J Clim 14:2015–2034

    Article  Google Scholar 

  • Maloney ED, Sobel AH (2004) Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J Clim 17:4368–4386

    Article  Google Scholar 

  • Moorthi S, Suarez MJ (1999) Documentation of version 2 of relaxed Arakawa–Schubert cumulus parameterization with convective downdrafts. NOAA Tech. Rep. NWS/NCEP 99-01, 44 pp

  • Moorthi S, Pan HL, Caplan P (2001) Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. NWS Technical Procedures Bulletin 484, 14 pp

  • Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1998) MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, p 668

    Google Scholar 

  • Pan HL, Wu WS (1995) Implementing a mass flux convective parameterization package for the NMC Medium-Range Forecast model. NMC Office Note 409, 40 pp

    Google Scholar 

  • Peters ME, Bretherton CS (2006) Structure of tropical variability from a vertical mode perspective. Theor Comput Fluid Dyn 20:501–524

    Article  Google Scholar 

  • Raymond DJ (2000) The Hadley circulation as a radiative-convective instability. J Atmos Sci 57:1286–1297

    Article  Google Scholar 

  • Raymond DJ (2001) A new model of the Madden–Julian oscillation. J Atmos Sci 58:2807–2819

    Article  Google Scholar 

  • Raymond DJ, Fuchs Z (2009) Moisture modes and the Madden–Julian oscillation. J Clim 22:3031–3046

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517

    Article  Google Scholar 

  • Salby ML, Hendon HH (1994) Intraseasonal behavior of clouds, temperature, and motion in the tropics. J Atmos Sci 51:2207–2224

    Article  Google Scholar 

  • Sengupta D, Goswami BN, Senan R (2001) Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys Res Lett 28:4127–4130

    Article  Google Scholar 

  • Seo KH, Wang W (2010) The Madden–Julian oscillation simulated in the NCEP climate forecast system model: the importance of stratiform heating. J Clim 23:4770–4793

    Article  Google Scholar 

  • Seo KH, Xue Y (2005) MJO-related oceanic Kelvin waves and the ENSO cycle: a study with the NCEP global ocean data assimilation system. Geophys Res Lett 32:L07712. doi:10.1029/2005GL022511

    Article  Google Scholar 

  • Seo KH, Schemm JKE, Jones C, Moorthi S (2005) Forecast skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Clim Dyn 25:265–284

    Article  Google Scholar 

  • Seo KH, Schemm JKE, Wang W, Kumar A (2007) The Boreal summer intraseasonal oscillation simulated in the NCEP climate forecast system: the effect of sea surface temperature. Mon Weather Rev 135:1807–1827

    Article  Google Scholar 

  • Seo KH, Choi JH, Han SD (2012) Factors for the simulation of convectively coupled Kelvin waves. J Clim 25:3495–3514

    Article  Google Scholar 

  • Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian longitudes during the south west monsoon. Mon Weather Rev 108:1840–1853

    Article  Google Scholar 

  • Simmons AJ, Uppala SM, Dee DP, Kobayashi S (2007) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Slingo JM et al (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357

    Article  Google Scholar 

  • Sobel AH, Johan N, Lorenzo MP (2001) The weak temperature gradient approximation and balanced tropical moisture waves. J Atmos Sci 58:3650–3665

    Article  Google Scholar 

  • Sobel AH, Maloney ED, Bellon G, Frierson DM (2008) The role of surface fluxes in tropical intraseasonal oscillations. Nat Geosci. doi:10.1038/ngeo312

    Google Scholar 

  • Sperber KR, Annamalai H (2008) Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, part I: systematic errors and caution on use of metrics. Clim Dyn 31:345–372. doi:10.1007/s00382-008-0367-9

    Article  Google Scholar 

  • Sperber KR, Gualdi S, Legutke S, Gayler V (2005) The Madden–Julian oscillation in ECHAM4 coupled and uncoupled general circulation models. Clim Dyn 25:117–140

    Article  Google Scholar 

  • Straub KH, Haertel PT, Kiladis GN (2010) An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J Clim 23:3031–3056

    Article  Google Scholar 

  • Sugiyama M (2009a) The moisture mode in the quasi-equilibrium tropical circulation model. Part I: analysis based on the weak temperature gradient approximation. J Atmos Sci 66:1507–1523

    Article  Google Scholar 

  • Sugiyama M (2009b) The moisture mode in the quasi-equilibrium tropical circulation model. Part II: nonlinear behavior on an equatorial β plane. J Atmos Sci 66:1525–1542

    Article  Google Scholar 

  • Thayer-Calder K, Randall DA (2009) The role of convective moistening in the Madden–Julian oscillation. J Atmos Sci 66:3297–3312

    Article  Google Scholar 

  • Tiedtke M (1983) The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. ECMWF Workshop on Convection in Large-Scale Numerical Models. Reading, England, pp 297–316

    Google Scholar 

  • Trenberth KE, Stephaniak DP (2003) Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J Clim 16:3706–3722

    Article  Google Scholar 

  • Tung WW, Lin C, Chen B, Yanai M, Arakawa A (1999) Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys Res Lett 26:3117–3120

    Article  Google Scholar 

  • Vecchi GA, Harrison DE (2002) Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J Clim 15:1485–1493

    Article  Google Scholar 

  • Waliser DE (1996) Formation and limiting mechanisms for very high sea surface temperature: linking the dynamics and thermodynamics. J Clim 9:161–188

    Article  Google Scholar 

  • Wang B, Rui H (1990) Synoptic climatology of transient intraseasonal convective anomalies. Meteorol Atmos Phys 44:43–61

    Article  Google Scholar 

  • Wang W, Schlesinger ME (1999) The dependence on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J Clim 12:1423–1457

    Article  Google Scholar 

  • Wang B, Xie X (1997) A model for the boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86

    Article  Google Scholar 

  • Webster PJ (1983) Mechanism of monsoon low-frequency variability: surface hydrological effects. J Atmos Sci 40:2110–2124

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Wheeler M, Hendon HH (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Woolnough SJ, Slingo JM, Hoskins BJ (2001) The organization of tropical convection by intraseasonal sea surface temperature anomalies. Q J R Meteorol Soc 127:888–907

    Article  Google Scholar 

  • Xavier PK (2012) Intraseasonal convective moistening in CMIP3 Models. J Clim 25:2569–2577

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43:RG2003

    Article  Google Scholar 

  • Zhang C, Dong M (2004) Seasonality in the Madden–Julian oscillation. J Clim 17:3169–3180

    Article  Google Scholar 

  • Zhang C, Hagos SM (2009) Bimodal structure and variability of large-scale diabatic heating in the tropics. J Atmos Sci 66:3621–3640

    Article  Google Scholar 

  • Zhang GJ, Mu M (2005) Simulation of the Madden–Julian oscillation in the NCAR CCM3 using a revised Zhang–McFarlane convection parameterization scheme. J Clim 18:4046–4064

    Article  Google Scholar 

  • Zhang C, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, Sperber KR, Wang W (2006) Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27:573–592

    Article  Google Scholar 

  • Zhu H, Hendon H, Jakob C (2009) Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J Atmos Sci 66:2796–2811

    Article  Google Scholar 

Download references

Acknowledgments

The first author sincerely thanks Mr. Jinho Choi for all the support in performing the sensitivity experiments. This work is supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2012–3071 and by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No. 2011-0015486). We also thank the anonymous reviewers for their constructive comments. The authors acknowledge the support of the Korea Institute of Science and Technology Information (KISTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Hwan Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sooraj, K.P., Seo, KH. Boreal summer intraseasonal variability simulated in the NCEP climate forecast system: insights from moist static energy budget and sensitivity to convective moistening. Clim Dyn 41, 1569–1594 (2013). https://doi.org/10.1007/s00382-012-1631-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1631-6

Keywords

Navigation