Skip to main content

Advertisement

Log in

Snow accumulation and its moisture origin over Dome Argus, Antarctica

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The spatial and temporal variability of snow accumulation near Dome Argus, Antarctica, is assessed using new snow pit and stake measurement data together with existing snow pit, ice core and automatic weather station records. Snow accumulation rate shows large inter-annual variations, but stable multi-decadal levels over the last seven centuries. Spatial variations in snow accumulation within the space of 50 km of Dome Argus are relatively small, probably thanks to the smooth topography. A comparison of theses accumulation observations with ECMWF reanalyses (ERA-40 and ERA-Interim) suggests ECMWF reanalysis captures the seasonal variations, but underestimates the overall snow accumulation at Dome Argus by ~50 %. The moisture sources for precipitation over Dome Argus are examined by means of a Lagrangian moisture source diagnostic, based on the tracing of specific humidity changes along air parcel trajectories, for the period 2000–2004 using operational ECMWF analysis data. Dome Argus mainly receives moisture from the mid-latitude (46 ± 4°S) South Indian Ocean, with a seasonal latitudinal shift of about 6°. Compared to other central East Antarctic deep ice core sites such as Dome F, Dome C, Vostok, and EPICA Dronning Maud Land, Dome Argus has a more southerly moisture origin, probably due to topographic influences on the moisture transport paths. These results have important implications for the interpretation of future ice cores at Dome Argus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agosta C, Favier V, Genthon C, Gallée H, Krinner G, Lenaerts JTM, van den Broek MR (2011) A 40-year accumulation dataset for Adelie Land, Antarctica and its application for model validation. Clim Dyn 38:75–86. doi:10.1007/s00382-011-1103-4

    Article  Google Scholar 

  • Anschütz H, Müller K, Isaksson E, McConnell JR, Fischer H, Miller H, Albert M, Winther J-G (2009) Revisiting sites of the South Pole Queen Maud Land Traverses in East Antarctica: accumulation data from shallow firn cores. J Geophys Res 114:D24106. doi:10.1029/2009JD012204

    Article  Google Scholar 

  • Arthern RJ, Winebrenner DP, Vaughan DG (2006) Antarctic snow accumulation mapped using polarization of 4.3-cm wavelength microwave emission. J Geophys Res 111:D06107. doi:10.1029/2004JD005667

    Article  Google Scholar 

  • Bromwich DH (1988) Snowfall in high southern latitudes. Rev Geophys 26:149–168

    Article  Google Scholar 

  • Bromwich DH, Nicolas JP (2011) An assessment of precipitation changes over Antarctica and the Southern Ocean since 1989 in contemporary global reanalyses. J Clim 24:4189–4209. doi:10.1175/2011JCLI4074.1

    Article  Google Scholar 

  • Cui X, Sun B, Tian G, Tang X, Zhang X, Jiang Y, Guo J, Li X (2010) Ice radar investigation at Dome A, East Antarctica: ice thickness and subglacial topography. Chin Sci Bull 55:425–431

    Article  Google Scholar 

  • Davis C, Li Y, McConnell J, Frey M, Hanna E (2005) Snowfall-driven growth in East Antarctic ice sheet mitigates recent sea-level rise. Science 308:1898–1901

    Article  Google Scholar 

  • Ding M, Xiao C, Li Y, Ren J, Hou S, Jin B, Sun B (2011) Spatial variability of surface mass balance along a traverse route. J Glaciol 57:658–666

    Article  Google Scholar 

  • Eisen O, Frezzotti M, Genthon C, Isaksson E, Magand O, van den Broeke M, Dixon DA, Ekaykin A, Holmlund P, Kameda T, Karlof L, Kaspari S, Lipenkov VY, Oerter H, Takahashi S, Vaughan DG (2008) Ground-based measurements of spatial and temporal variability of snow accumulation in East Antarctica. Rev Geophys 46:1–39. doi:10.1029/2006RG000218

    Article  Google Scholar 

  • Ekaykin AA, Lipenkov VY, Barkov NI, Petit JR, Masson-Delmotte V (2002) Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok Station: implications for ice-core record interpretation. Ann Glaciol 35:181–186

    Article  Google Scholar 

  • Frezzotti M, Pourchet M, Flora O, Gandolfi S, Gay M, Urbini S, Vincent C, Becagli S, Gragnani R, Proposito M, Severi M, Traversi R, Udisti R, Fily M (2005) Spatial and temporal variability of snow accumulation in East Antarctica from traverse data. J Glaciol 51:113–124

    Article  Google Scholar 

  • Frezzotti M, Urbini S, Proposito M, Scarchilli C, Gandolfi S (2007) Spatial and temporal variability of surface mass balance near Talos Dome, East Antartica. J Geophys Res 112:F02032. doi:10.1029/2006JF000638

    Article  Google Scholar 

  • Frezzotti M, Scarchilli C, Becagli S, Proposito M, Urbini S (2012) A synthesis of the antarctic surface mass balance during the last eight centuries. The Cryosp Discuss 6:821–848

    Article  Google Scholar 

  • Fujita S, Holmlund P, Andersson I, Brown I, Enomoto H, Fujii Y, Fujita K, Fukui K, Furukawa T, Hansson M, Hara K, Hoshina Y, Igarashi M, Iizuka Y, Imura S, Ingvander S, Karlin T, Motoyama H, Nakazawa F, Oerter H, Sjöberg LE, Sugiyama S, Surdyk S, Ström J, Uemura R, Wilhelms F (2011) Spatial and temporal variability of snow accumulation rate on the East Antarctic ice divide between Dome Fuji and EPICA DML. The Cryosp 5:1057–1081

    Article  Google Scholar 

  • Helsen MM, van de Wal RSW, van den Broeke MR, Masson-Delmotte V, Meijer HAJ, Scheele MP, Werner M (2006) Modeling the isotopic composition of Antarctic snow using backward trajectories: simulation of snow pit records. J Geophys Res 111:D15109. doi:10.1029/2005JD006524

    Article  Google Scholar 

  • Helsen MM, van de Wal RSW, van den Broeke MR (2007) The isotopic composition of present-day Antarctic snow in a Lagrangian atmospheric simulation. J Clim 20:739–756. doi:10.1175/JCLI4027.1

    Article  Google Scholar 

  • Hou S, Li Y, Xiao C, Ren J (2007) Recent accumulation rate at Dome A, Antarctica. Chin Sci Bull 52:428–431

    Article  Google Scholar 

  • Igarashi M, Nakai Y, Motizuki Y, Takahashi K, Motoyama H, Makishima K (2011) Dating of the Dome Fuji shallow ice core based on a record of volcanic eruptions from AD 1260 to AD 2001. Polar Sci 5:411–420. doi:10.1016/j.polar.2011.08.001

    Article  Google Scholar 

  • Jiang S, Cole-Dai JH, Li Y, Ferris DG, Ma H, An C, Shi G, Sun B (2012) A detailed 2840 year record of explosive volcanism in a shallow ice core from Dome A, East Antarctica. J Glaciol 58:65–75. doi:10.3189/2012JoG11J138

    Article  Google Scholar 

  • Jouzel J, Merlivat L (1984) Deuterium and oxygen 18 in precipitation: modeling of the isotopic effects during snow formation. J Geophys Res 89:11749–11758

    Article  Google Scholar 

  • Jouzel J, Vimeux F, Caillon N, Delaygue G, Hoffmann G, Masson-Delmotte V, Parrenin F (2003) Magnitude of the isotope-temperature scaling for interpretation of central Antarctic ice cores. J Geophys Res 108:4361. doi:10.1029/2002JD002677

    Article  Google Scholar 

  • Kameda T, Motoyama H, Fujita S, Takahashi S (2008) Temporal and spatial variability of surface mass balance at Dome Fuji, East Antarctica, by the stake method from 1995 to 2006. J Glaciol 54:107–116

    Article  Google Scholar 

  • Krinner G, Genthon C, Jouzel J (1997) GCM analysis of local influences on ice core δ signals. Geophys Res Lett 24:2825–2828. doi:10.1029/97GL52891

    Article  Google Scholar 

  • Kurita N (2011) Origin of Arctic water vapor during the ice-growth season. Geophys Res Lett 38:L02709. doi:10.1029/2010GL046064

    Article  Google Scholar 

  • Laepple T, Werner M, Lohmann G (2011) Synchronicity of Antarctic temperature and local solar insolation on orbital time scales. Nature 471:91–94

    Article  Google Scholar 

  • Liu H, Jezek K, Li B, Zhao Z (2001) Radarsat Antarctic mapping project digital elevation model version 2. National Snow and Ice Data Center. Digital media, Boulder

    Google Scholar 

  • Ma Y, Bian L, Xiao C, Allison I, Zhou X (2010) Near surface climate of the traverse route from Zhongshan Station to Dome A, East Antarctica. Antarct Sci 22:443–459

    Article  Google Scholar 

  • Magand O, Genthon C, Fily M, Krinner G, Picard G, Frezzotti M, Ekaykin A (2007) An up-to-date quality controlled surface mass balance data set for the 90°–180°E Antarctica sector and 1950–2005 period. J Geophys Res 112:D12106. doi:10.1029/2006JD007691

    Article  Google Scholar 

  • Masson-Delmotte V, Hou S, Ekaykin A, Jouzel J, Aristarain A, Bernardo RT, Bromwich DH, Cattani O, Delmotte M, Falourd S, Frezzotti M, Gallée H, Genoni L, Isaksson E, Landais A, Helsen MM, Hoffmann G, Lopez J, Morgan V, Motoyama H, Noone D, Oerter H, Petit JR, Royer A, Uemura R, Schmidt GA, Schlosser E, Simões JC, Steig EJ, Stenni B, Stiévenard M, van den Broeke MR, van de Wal RSW, van de Berg WJ, Vimeux F, White JWC (2008) A review of Antarctic surface snow isotopic composition: observations, atmospheric circulation and isotopic modelling. J Clim 21:3359–3387. doi:10.1175/2007JCLI2139.1

    Article  Google Scholar 

  • Masson-Delmotte V, Stenni B, Blunier T, Cattani O, Chappellaz J, Cheng H, Dreyfus G, Edwards RL, Falourd S, Govin A, Kawamura K, Johnsen SJ, Jouzel J, Landais A, Lemieux-Dudon B, Lourantou A, Marshall G, Minster B, Mudelsee M, Pol K, Röthlisberger R, Selmo E, Waelbroeck C (2010) Abrupt change of Antarctic moisture origin at the end of termination II. PNAS 107:12091–12094

    Article  Google Scholar 

  • Masson-Delmotte V, Buiron D, Ekaykin A, Frezzotti M, Gallée H, Jouzel J, Krinner G, Landais A, Motoyama H, Oerter H, Pol K, Pollard D, Ritz C, Schlosser E, Sime LC, Sodemann H, Stenni B, Uemura R, Vimeux F (2011) A comparison of the present and last interglacial periods in six Antarctic ice cores. Clim Past 7:397–423

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Fogt RL, Wang S, Mayewski PA, Dixon DA, Ekaykin A, Frezzotti M, Goodwin I, Isaksson E, Kaspari SD, Morgan VI, Oerter H, Van Ommen TD, Van der Veen CJ, Wen J (2006a) Insignificant change in Antarctic snowfall since the international geophysical year. Science 313:827–831. doi:10.1126/science.1128243

    Article  Google Scholar 

  • Monaghan AJ, Bromwich DH, Wang SH (2006b) Recent trends in Antarctic snow accumulation from Polar MM5 simulations. Philos Trans R Soc A 364:1683–1708. doi:10.1098/rsta.2006.1795

    Article  Google Scholar 

  • Neumann T, Waddington E (2004) Effects of firn ventilation on isotopic exchange. J Glaciol 169:183–194

    Article  Google Scholar 

  • Neumann T, Waddington E, Steig E, Grootes P (2005) Non-climate influences on stable isotopes at Taylor Mouth, Antarctica. J Glaciol 51:248–258

    Article  Google Scholar 

  • Nieto R, Durán-Quesada AM, Gimeno L (2010) Major sources of moisture for Antarctic ice-core sites identified through a Lagrangian approach. Clim Res 40:45–49

    Article  Google Scholar 

  • Noone D, Simmonds I (2002) Annular variations in moisture transport mechanisms and the abundance of δ18O in Antarctic snow. J Geophys Res 107(D24):4742. doi:10.1029/2002JD002262

    Article  Google Scholar 

  • Parish TR, Bromwich DH (1998) A case study of Antarctic katabatic wind interaction with large-scale forcing. Mon Weather Rev 126:199–209

    Article  Google Scholar 

  • Petit JR, White JWC, Young NW, Jouzel J, Korotkevich YS (1991) Deuterium excess in recent Antarctic snow. J Geophys Res 96(D3):5113–5122

    Article  Google Scholar 

  • Pourchet M, Pinglot F, Lorius C (1983) Some meteorological applications of radioactive fallout measurements in Antarctic snows. J Geophys Res 88:6013–6020

    Article  Google Scholar 

  • Qin D, Xiao C, Allison I, Bian L, Stephenson R, Ren J, Yan M (2004) Snow surface height variations on the Antarctic ice sheet in Princess Elizabeth Land, Antarctica: 1 year of data from an automatic weather station. Ann Glaciol 39:181–187

    Article  Google Scholar 

  • Reijmer CH, van den Broeke MR (2002) Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. J Clim 15:1957–1968

    Article  Google Scholar 

  • Reijmer CH, van den Broeke MR (2003) Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. J Glaciol 49:512–520

    Article  Google Scholar 

  • Ren J, Xiao C, Qin D (2002) Mass balance in the Lambert Glacier Basin and variability of the Antarctic ice sheet. Prog Nat Sci 12:1064–1069

    Google Scholar 

  • Satake H, Kawada K (1997) The quantitative evaluation of sublimation and the estimation of original hydrogen and oxygen of a firn core at East Queen Maud Land, Antarctica. Bull Glacier Res 15:93–97

    Google Scholar 

  • Scarchilli C, Frezzotti M, Ruti PM (2011) Snow precipitation at four ice core sites in East Antarctica: provenance, seasonality and blocking factors. Clim Dynam (in press). doi:10.1007/s00382-010-0946-4

  • Schlosser E, Oerter H, Masson-Delmotte V, Reijmer C (2008) Atmospheric influence on the deuterium excess signal in polar firn: implications for ice-core interpretation. J Glaciol 54:117–124

    Article  Google Scholar 

  • Sime LC, Tindall JC, Wolff EW, Connolley WM, Valdes PJ (2008) Antarctic isotopic thermometer during a CO2 forced warming event. J Geophys Res 113:D24119. doi:10.1029/2008JD010395

    Article  Google Scholar 

  • Sime LC, Wolff EW, Oliver KIC, Tindall JC (2009) Evidence for warmer interglacials in East Antarctic ice cores. Nature 462:342–345

    Article  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35. (Available online at http://www.ecmwf.int/publications/newsletters/pdf/110_rev.pdf)

  • Sodemann H, Stohl A (2009) Asymmetries in the moisture origin of Antarctic precipitation. Geophys Res Lett 36:L22803. doi:10.1029/2009GL040242

    Article  Google Scholar 

  • Sodemann H, Schwierz C, Wernli H (2008a) Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic oscillation influence. J Geophys Res 113:D03107. doi:10.1029/2007JD008503

    Article  Google Scholar 

  • Sodemann H, Masson-Delmotte V, Schwierz C, Vinther BM, Wernli H (2008b) Inter-annual variability of Greenland winter precipitation sources. Part II: effects of North Atlantic oscillation variability on stable isotopes in precipitation. J Geophys Res 113:D12111. doi:10.1029/2007JD009416

    Article  Google Scholar 

  • Sommer S, Appenzeller C, Röthlisberger R, Hutterli MA, Stauffer B, Wagenbach D, Oerter H, Wilhelms F, Miller H, Mulvaney R (2000) Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica 1. Annually resolved accumulation rates. J Geophys Res 105(D24):29411–29421

    Article  Google Scholar 

  • Stenni B, Masson V, Johnsen SJ, Jouzel J, Longinelli A, Monnin E, Roethlisberger R, Selmo E (2001) An oceanic cold reversal during the last deglaciation. Science 293:2074–2077

    Article  Google Scholar 

  • Stenni B, Masson-Delmotte V, Selmo E, Oerter H, Meyer H, Röthlisberger R, Jouzel J, Cattani O, Falourd S, Fischer H, Hoffmann G, Iacumin P, Johnsen S, Minster B, Udisti R (2010) The deuterium excess records of EPICA Dome C and Dronning Maud Land ice cores (East Antarctica). Quat Sci Rev 29:146–159. doi:10.1016/j.quascirev.2009.10.009

    Article  Google Scholar 

  • Stohl A, Sodemann H (2010) Characteristics of atmospheric transport into the Antarctic troposphere. J Geophys Res 115:D02305. doi:10.1029/2009JD012536

    Article  Google Scholar 

  • Stohl A, Forster C, Frank A, Seibert P, Wotawa G (2005) Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos Chem Phys 5:2461–2474

    Article  Google Scholar 

  • Thomas ER, Bracegirdle TJ (2009) Improving ice core interpretation using in situ and reanalysis data. J Geophys Res 114:D20116. doi:10.1029/2009JD012263

    Article  Google Scholar 

  • Uemura R, Matsui Y, Yoshimura K, Motoyama H, Yoshida N (2008) Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J Geophys Res 113:D19114. doi:10.1029/2008JD010209

    Article  Google Scholar 

  • Uppala SM, Kållberg PW, Simmmons AJ, Andrea U, Da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskin BJ, Isaken L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J–J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Uppala SM, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, No. 115, ECMWF, Reading, United Kingdom, 12–18. (Available online at http://www.ecmwf.int/publications/newsletters/pdf/115_rev.pdf)

  • van den Broeke MR, Reijmer CH, van de Wal RSW (2004) A study of the surface mass balance in Dronning Maud Land, Antarctica, using automatic weather stations. J Glacio 50:565–582

    Article  Google Scholar 

  • Winkler R, Landais A, Sodemann H, Dümbgen L, Prié F, Masson-Delmotte V, Stenni B, Jouzel J (2012) Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic normalized relative humidity from coastal sites. Clim Past 8:1–16. doi:10.5194/cp-8-1-2012

    Article  Google Scholar 

  • Xiao C, Qin D, Bian L, Zhou X, Allison I, Yan M (2005) A precise monitoring of snow surface height in the region of Lambert Glacier Basin-Amery Ice Shelf, East Antarctica. Sci China Ser D 48:100–111. doi:10.1360/03yd0127

    Article  Google Scholar 

  • Xiao C, Li Y, Hou S, Allison I, Bian L, Ren J (2008a) Preliminary evidences indicate Dome A (Antarctica) satisfying preconditions for drilling the oldest ice core. Chin Sci Bull 53:102–106

    Article  Google Scholar 

  • Xiao C, Li Y, Allison I, Hou S, Dreyfus G, Barnola JM, Ren J, Bian L, Zhang S, Kameda T (2008b) Surface characteristics at Dome A, Antarctica: first measurements and a guide to future ice-coring sites. Ann Glaciol 48:82–87

    Article  Google Scholar 

Download references

Acknowledgments

Thanks to the members of the 21st and 26th CHINARE for field support. Thanks to Michiel Martijn Helsen for providing 1° × 1° ERA-40 data. We would like to acknowledge two anonymous referees for their comments and suggestions to improve the paper. This work was funded by the Natural Science Foundation of China (40825017, 41171052, 41176165), the State Oceanic Administration (CHINARE2012-02-02) and Ministry of Education (20110091110025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yetang Wang or Shugui Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Sodemann, H., Hou, S. et al. Snow accumulation and its moisture origin over Dome Argus, Antarctica. Clim Dyn 40, 731–742 (2013). https://doi.org/10.1007/s00382-012-1398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1398-9

Keywords

Navigation