Skip to main content
Log in

The retrospective prediction of El Niño-southern oscillation from 1881 to 2000 by a hybrid coupled model: (I) Sea surface temperature assimilation with ensemble Kalman filter

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we assimilated sea surface temperature (SST) data of the past 120 years into an oceanic general circulation model (OGCM) for El Niño-southern oscillation (ENSO) retrospective predictions using ensemble Kalman filter (EnKF). It was found that the ensemble covariance matrix in EnKF can act as a time-variant transfer operator to project the SST corrections onto the subsurface temperatures effectively when initial perturbations of ensemble were constructed using vertically coherent random fields. As such the increments of subsurface temperatures can be obtained via the transfer operator during assimilation cycles. The results show that the SST assimilation improves the model simulation skills significantly, not only for the SST anomalies over the whole assimilated domain, but also for the subsurface temperature anomalies of the upper 100 m over the tropical Pacific off the equator. Along the equator, the improvement of the assimilation is confined within the mixing layer because strong upwelling motions there prevent the downward transfer of SST information. The retrospective prediction skills of ENSO over the past 120 years from 1881 to 2000 were significantly improved by the SST assimilation at all leads of 1–12 months, especially for the 3–6 months leads, compared with those initialized by the control run without assimilation. The skilful predictions by the assimilation allow us to further study ENSO predictability using this coupled model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this study, it is set to (0.25ºC)2. It should be noted that the error variance is often assumed to be proportional to the signal variance. Thus it might be more reasonable to produce the variance of observation error based on the signal variance, as shown in Fig. 1.

References

  • Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Wea Rev 129:2884–2903

    Article  Google Scholar 

  • Annan JD, Hargreaves JC, Edwards NR, Marsh R (2005) Parameter estimation in an intermediate complexity Earth System Model using an ensemble Kalman filter. Ocean Model 8(1–2):135–154

    Article  Google Scholar 

  • Barnett TP, Latif M, Graham N, Flugel M, Pazan S, White W (1993) ENSO and ENSO-related predictability: part 1—prediction of equatorial Pacific sea surface temperatures with a hybrid coupled ocean–atmosphere model. J Climate 6:1545–1566

    Article  Google Scholar 

  • Behringer DW, Ji M, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications forocean initialization. Part I: the ocean data assimilation system. Mon Weather Rev 126:1013–1021

    Article  Google Scholar 

  • Bowler NE (2006) Comparison of error breeding, singular vectors, random perturbations and ensemble Kalman filter perturbation strategies on a simple model. Tellus 58A:538–548

    Google Scholar 

  • Carton JA, Cao X, Giese BS, da Silva AM (1996) Decadal and interannual SST variability in the tropical Atlantic Ocean. Phys Oceanogr 26:1165–1175

    Article  Google Scholar 

  • Chen D, Zebiak SE, Busalacchi AJ, Cane MA (1995) An improved procedure for El Niño forecasting. Science 269:1699–1702

    Article  Google Scholar 

  • Chen D, Zebiak SE, Cane MA (1997) Initialization and predictability of a coupled ENSO forecast model. Mon Weather Rev 125:773–788

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736

    Article  Google Scholar 

  • Deng Z, Tang Y (2007) Reconstruction of historic wind stress over the tropical Pacific Ocean for 1856–1948 (to be submitted)

  • Deng Z, Tang Y (2008) The retrospective prediction of ENSO from 1881–2000 by a hybrid coupled model—(II) interdecadal and decadal variations in predictability. Clim Dyn (in press)

  • Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19:1333–1347

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J Geophys Res 99((C5)):10143–10162

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:39–560

    Article  Google Scholar 

  • Fukumori I (2001) Data assimilation by models, chap 5. Academic, New York, pp 237–265

    Google Scholar 

  • Galanti E, Tziperman E (2003) A study of ENSO prediction using a hybrid coupled model and the adjoint method for data assimilation. Mon Weather Rev 131:2748–2764

    Article  Google Scholar 

  • Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal to interannual climate predictions. Int J Climatol 21:1111–1152

    Article  Google Scholar 

  • Hargreaves JC, Annan JD, Edwards NR, Marsh R (2004) Climate forecasting using an intermediate complexity Earth System Model and the ensemble Kalman filter. Clim Dyn 23(7–8):745–760

    Article  Google Scholar 

  • Harrison MJ, Rosati A, Soden BJ, Galanti E, Tziperman E (2002) An evaluation of air–sea flux products for ENSO simulation and prediction. Mon Weather Rev 130:723–732

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL, Pellerin G, Buehner M, Charron M, Spacek L, Hansen B (2005) Atmospheric data assimilation with an ensemble Kalman filter: results with real observations. Mon Weather Rev 133:604–620

    Article  Google Scholar 

  • Ji M, Reynolds RW, Behringer DW (2000) Use of TOPEX/Poseidon sea level data for ocean analyses and ENSO prediction: some early results. J Clim 13:216–231

    Article  Google Scholar 

  • Kalnay A et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Kaplan A et al (1998) Analysis of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing El Niño–southern oscillation forecasts using sea surface temperature. Tellus 57A:340–356

    Google Scholar 

  • Keppenne CL, Rienecker MM (2003) Assimilation of Temperature into an isopycnal oceangeneral circulation model using a parallel Ensemble Kalman Filter. J Mar Syst 40–41:363–380

    Article  Google Scholar 

  • Kepert JD (2004) On ensemble representation of the observation–error convariance in the Ensemble Kalman filter. Ocean Dyn 6:561–569

    Article  Google Scholar 

  • Kessler WS (2006) The circulation of the eastern tropical Pacific: a review. Prog Oceanogr 69:181–217

    Article  Google Scholar 

  • Kirtman BP (2003) The COLA anomaly coupled model: ensemble ENSO prediction. Mon Weather Rev 131:2323–2341

    Article  Google Scholar 

  • Kirtman BP, Zebiak SE (1997) ENSO simulation and prediction with a hybrid coupled model. Mon Wea Rev 125:2620–2641

    Article  Google Scholar 

  • Kirtman BP, Dughong M (2007) US national multi-model ENSO prediction with CFS and CCSM3. NOAA CTB—COLA joint seminar, 10 October 2007

  • Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteor Soc 82:247–268

    Article  Google Scholar 

  • Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375–14393

    Article  Google Scholar 

  • Levitus, S, Boyer T (1998) NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,http://www.cdc.noaa.gov.

  • Luo J-J, Masson S, Behera S, Shingu S, Yamagata T (2005) Seasonal climate predictability in a Coupled OAGCM using a different approach for ensemble forecasts. J Climate 18:4474–4495

    Article  Google Scholar 

  • Madec G, Delecluse P, Imbard M, Levy C (1998) OPA 8.1 ocean general circulation model reference manual. Institut Pierre-Simon Laplace des Sciences l’Environnement Global, LODYC. Université Pierre et Marie Curie, Paris, France, 97 pp

  • McPhaden MJ et al (1998) The tropical ocean global atmosphere (TOGA) observing system: a decade of progress. J Geophys Res 103(C7):14169–14240

    Article  Google Scholar 

  • Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: methodology and validation. Q J R Meteor Soc 122:73–119

    Article  Google Scholar 

  • Monahan AH (2001) Nonlinear principal component analysis: tropical Indo-Pacific sea surface temperature and sea level pressure. J Clim 14:219–233

    Article  Google Scholar 

  • Monahan AH, Dai A (2004) The spatial and temporal structure of ENSO nonlinearity. J Climate 17:3026–3036

    Article  Google Scholar 

  • Moore AM, Kleeman R (1998) Skill assessment for ENSO using ensemble prediction. Q J R Meteor Soc 124:557–584

    Article  Google Scholar 

  • Moore AM, Zavala-Garay J, Tang Y, Kleeman R, Vialard J, Weaver A, Sahami K, Anderson DLT, Fisher M (2006) Optimal forcing patterns for coupled models of ENSO. J Clim 19:4683–4699

    Article  Google Scholar 

  • Nakaegawa T, Kanamttsu M, Smith TM (2004) Interdecadal trend of prediction skill in an ensemble AMIP-type experiment. J Clim 15:2881–2889

    Article  Google Scholar 

  • Oberhuber JM, Roeckner E, Christoph M, Esch M, Latif M (1998) Predicting the ‘97 El Niño event with a global climate model. Geophys Res Lett 25:2273–2276

    Article  Google Scholar 

  • Palmer T, Hagedorn R. (2006) Predictability of weather and climate. Cambridge University Press, Cambridge, pp 514–560

    Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Wea Rev 125:754–772

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2002) Bias corrections for historical sea surface temperatures based on marine air temperatures. J Climate 15:73–87

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Climate 16:1495–1510

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Improved extended reconstruction of SST (1854–1997). J Climate 17:2466–2477

    Article  Google Scholar 

  • Shukla J et al (2000) Dynamical seasonal prediction. Bull Am Meteor Soc 81:2593–2606

    Article  Google Scholar 

  • Snyder C, Zhang F (2003) Assimilation of simulated Doppler radar observations with anensemble Kalman filter. Mon Wea Rev 131:1663–1677

    Article  Google Scholar 

  • Syu H-H, Neelin D (2000a) ENSO in a hybrid coupled model. Part I: sensitivity to physical parametrizations. Clim Dyn 16:19–34

    Article  Google Scholar 

  • Syu H-H, Neelin D (2000b) ENSO in a hybrid coupled model. Part II: prediction with piggyback data assimilation. Clim Dyn 16:35–48

    Article  Google Scholar 

  • Tang Y (2002) Hybrid coupled models of the tropical Pacific—interannual variability. Clim Dyn 19:331–342

    Article  Google Scholar 

  • Tang Y, Hsieh WW (2002) Hybrid coupled models of the tropical Pacific–ENSO prediction. Clim Dyn 19:343–353

    Article  Google Scholar 

  • Tang Y, Hsieh WW (2003) ENSO simulation and predictions using a hybrid coupled model with data assimilation. J Jpn Meteor Soc 81:1–19

    Article  Google Scholar 

  • Tang Y, Kleeman R (2002) A new strategy for SST assimilatinon for ENSO prediction. Geophys Res Lett 10.1029

    Google Scholar 

  • Tang Y, Kleeman R, Moore A (2004) SST assimilation experiments in a tropical Pacific Ocean model. J Phys Oceangr 34:623–642

    Article  Google Scholar 

  • Tang Y, Kleeman R, Moore A (2005) On the reliability of ENSO dynamical predictions. J Atmos Sci 62:1770–1791

    Article  Google Scholar 

  • Tang Y, Deng Z, Zhou X, Cheng Y, Chen D (2007) Interdecadal variation of ENSO predictability in multiple models. J Clim (in press)

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteor Soc 79:61–78

    Article  Google Scholar 

  • Toth Z, Kalnay E (1993) Ensemble forecasting at NMC: the generation of perturbations. Bull Am Meteor Soc 74:2317–2330

    Article  Google Scholar 

  • Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Wea Rev 125:3297–3319

    Article  Google Scholar 

  • von Storch H., Zwiers F.W. (1999) Statistical analysis in climate research. Cambridge University Press, London, p 499

    Google Scholar 

  • Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Wea Rev 130:1913–1924

    Article  Google Scholar 

  • Whittenberg AT (2004) Extended wind stress analyses for ENSO. J Climate 17:1526–2540

    Google Scholar 

  • Xue Y, Smith TM, Reynolds RW (2003) Interdecadal changes of 30-year SST normals during 1871–2000. J Clim 15:1601–1612

    Google Scholar 

  • Zelle H (2004) The relation between sea surface temperature and thermocline depth in the eastern equatorial Pacific. J Phys Oceangr 34:643–655

    Article  Google Scholar 

  • Zhang F (2005) Dynamics and structure of mesoscale error covariance of a winter cycloneestimated through short-range ensemble forecasts. Mon Wea Rev 133:2876–2893

    Article  Google Scholar 

  • Zhang F, Meng Z, Aksoy A (2006) Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation, part I: perfect model experiments. Mon Wea Rev 134:722–736

    Article  Google Scholar 

  • Zheng F, Zhang J, Zhang R, Zhou G (2006) Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys Res Lett 33:L19604

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Tom Smith for detailed comments on the original manuscript. This work was supported by Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) Grant GR-523 and the Discovery grant of Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youmin Tang.

Appendix: Estimation of the linear increment transfer operator

Appendix: Estimation of the linear increment transfer operator

In this study, we consider the sea temperatures of the top 17 model levels. Thus X in (3) can be written X = [x 1 x 2 …x k …x 17 ]′, where x k is the kth level’s temperature field. Denoted by m (m = 71 × 31)the number of spatial grids of assimilation domain at a level, x k is an m-dimensional vector. P e f in (3) is a covariance matrix between grids, which is an M × M(M = 17 × m) 2-dimentional matrix. We write P f e using sub-matrices, the covariance between grids of two levels and the covariance between grids of the same level, namely,

$$ {{\mathbf{P}}}_{e}^{f}=\left[\begin{array}{ccccccc} {{\mathbf{C}}_{1,1} } & {{\mathbf{C}}_{1,2} } & \ldots & {{\mathbf{C}}_{1,k2}} & \ldots & {{\mathbf{C}}_{1,K-1} } & {{\mathbf{C}}_{1,K} }\\ {{\mathbf{C}}_{2,1} } & {{\mathbf{C}}_{2,2} } & \ldots & {{\mathbf{C}}_{2,k2}} & \ldots & \ldots & \ldots\\ \ldots & \ldots &&& \ldots\\ \ldots & \ldots &\ldots&\ldots& \ldots&&\ldots\\ {{\mathbf{C}}_{k1,1} } & {{\mathbf{C}}_{k1,2} } & \ldots & {{\mathbf{C}}_{k1,k2}} & \ldots & {{\mathbf{C}}_{k1,K-1} } & \ldots\\ \ldots & \ldots &&& \ldots&&\ldots\\ {{\mathbf{C}}_{K-1,1} } & \ldots& & \ldots & & {{\mathbf{C}}_{K-1,K}} & {{\mathbf{C}}_{K-1,K-1} } \\ {{\mathbf{C}}_{K,1} } & {{\mathbf{C}}_{K,1} } & & {{\mathbf{C}}_{K,j}} & & {{\mathbf{C}}_{K,K-1} } & {{\mathbf{C}}_{K,K} }\\ \end{array} \right]$$
(8)

where sub-matrix C k1,k2 is an m × m covariance matrix between grids of the k 1th and grids of the k 2th level. When k 1 = k 2, the sub-matrix denotes the covariance of grids of a same level (diagonal element in (Eq. 8). K = 17 is the number of all levels.

The measurement operator H in (3) converts the model state variables to the observational variables. Its simplest form is a linear function to interpolate from the model grid to the observational stations, which is often used when the observed variable is the same as the analyzed state variable. In this study, the observed variable is SSTA and the analyzed state variable is STA at 17 levels including SSTA. For a full presentation, = [H 1 H 2H k H k+1H K ] is a L × M.matrix where H 1 is a L × m matrix which interpolates model SSTA from model grids to SSTA on observation grids (L denoting the number of observation grids). H 2, H 3, …H K are assumed, for simplicity, to be zero matrixes with the same dimension as matrix H 1 Hence we can simplify terms in the Eq. 3 as follows:

$$ {\mathbf{P}}_e^f {\mathbf{H}}^T = \left[ {\begin{array}{*{20}c} {{\mathbf{C}}_{1,1} {\mathbf{H}}_1 } & {{\mathbf{C}}_{2,1} {\mathbf{H}}_1 } & \ldots & {{\mathbf{C}}_{K,1} {\mathbf{H}}_1 } \\ \end{array} } \right]^T $$
(9)
$$ {\mathbf{HP}}_e^f {\mathbf{H}}^T = \left[ {\begin{array}{*{20}c} {{\mathbf{H}}_1 {\mathbf{C}}_{1,1} } & {{\mathbf{H}}_1 {\mathbf{C}}_{1,2} } & \ldots & {{\mathbf{H}}_1 {\mathbf{C}}_{1,K} } \\ \end{array} } \right]{\mathbf{H}}^T = {\mathbf{H}}_1 {\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T $$
(10)
$$ ({\mathbf{d}} - {\mathbf{HX}}) = ({\mathbf{d}} - {\mathbf{H}}_1 {\mathbf{x}}_1 ) $$
(11)

Equation 3 could be rewritten as below:

$$ \left[ \begin{array}{c} {{\mathbf{x}}_1^a } \\ {{\mathbf{x}}_2^a } \\ \ldots \\ {\mathbf{x}}_k^a \\ \ldots \\ {{\mathbf{x}}_{16}^a } \\ {{\mathbf{x}}_{17}^a } \end{array} \right] = \left[ \begin{array}{c} {{\mathbf{x}}_1^f } \\ {{\mathbf{x}}_2^f } \\ \ldots \\ {\mathbf{x}}_k^f \\ \ldots \\ {{\mathbf{x}}_{16}^f } \\ {{\mathbf{x}}_{17}^f } \end{array} \right] + \left[ \begin{array}{c} {{\mathbf{C}}_{1,1} } \\ {{\mathbf{C}}_{2,1} } \\ \ldots \\ {\mathbf{C}}_{k,1} \\ \ldots \\ {{\mathbf{C}}_{16,1} } \\ {{\mathbf{C}}_{17,1} } \end{array} \right]{\mathbf{H}}_1 ^T ({\mathbf{H}}_1 {\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T + {\mathbf{R}}_e )^{ - 1} ({\mathbf{d}} - {\mathbf{H}}_1 {\mathbf{x}}_1^f ) $$
(12)

If C 1,1 is non-singular, the equation ( 12 ) could then be written:

$$ \left[ {\begin{array}{c} {{\mathbf{x}}_1^a } \\ {{\mathbf{x}}_2^a } \\ \ldots \\ {\mathbf{x}}_k^a \\ \ldots \\ {{\mathbf{x}}_{16}^a } \\ {{\mathbf{x}}_{17}^a } \\ \end{array} } \right] = \left[ {\begin{array}{c} {{\mathbf{x}}_1^f } \\ {{\mathbf{x}}_2^f } \\ \ldots \\ {\mathbf{x}}_k^f \\ \ldots \\ {{\mathbf{x}}_{16}^f } \\ {{\mathbf{x}}_{17}^f } \\ \end{array} } \right] + \left[ {\begin{array}{c} {\mathbf{I}} \\ {{\mathbf{B}}_{2,1} } \\ \ldots \\ {\mathbf{B}}_{k,1} \\ \ldots \\ {{\mathbf{B}}_{16,1} } \\ {{\mathbf{B}}_{17,1} } \\ \end{array} } \right]{\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T ({\mathbf{H}}_1 {\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T + {\mathbf{R}}_e )^{-1} ({\mathbf{d}}- {\mathbf{H}}_1 {\mathbf{x}}_1^f ) $$
(13)

Where I is an identity matrix,

$$ {\mathbf{B}}_{k,1} = {\mathbf{C}}_{k,1} {\mathbf{C}}_{1,1} ^{ - 1} $$
(14)

From (8), we have

$$ {\mathbf{x}}_1^a = {\mathbf{x}}_1^f + {\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T ({\mathbf{H}}_1 {\mathbf{C}}_{1,1} {\mathbf{H}}_1 ^T + {\mathbf{R}}_e )^{ - 1} ({\mathbf{d}} - {\mathbf{H}}_1 {\mathbf{x}}_1^f ) = {\mathbf{x}}_1^f + \Updelta {\mathbf{x}}_{\mathbf{1}} $$
(15)
$$ {\mathbf{x}}_k^a = {\mathbf{x}}_k^f + {\mathbf{B}}_{k,1} \Updelta {\mathbf{x}}_{\mathbf{1}} $$
(16)

Equation 16 shows that B k,1 is a transfer matrix to project the corrections of SST (Δx 1) to the subsurface of the kth level to correct its temperatures by B k,1Δx 1.

At each assimilation step, the transfer operator B k,1 can be calculated by ensemble members with Eq. (8), thus it is a time-variant matrix. Theoretically, when the SST is perturbed with a random perturbation, B k,1 could be obtained. However it was found that if we only perturbed SST, the C k,1 would be very small due to a very small variation of the kth level temperature, leading to very small B k,1. Thus in this study, the initial perturbations are exerted on not only SST but also the temperatures of other upper 4 model levels. From these initial perturbations, the ensemble is constructed. B k,1 that is obtained by ensemble members of the prediction model, characterizes the physical relationship between SST and the subsurface temperature.

Usually the dimension of C 1,1 is far larger than the limited ensemble size, easily leading to a singular C 1,1. Theoretically it is still possible to compute the pseudo-inverse matrix of C 1,1. In practice, we directly use (8) to avoid computing the inverse matrix of C 1,1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, Z., Tang, Y. & Zhou, X. The retrospective prediction of El Niño-southern oscillation from 1881 to 2000 by a hybrid coupled model: (I) Sea surface temperature assimilation with ensemble Kalman filter. Clim Dyn 32, 397–413 (2009). https://doi.org/10.1007/s00382-008-0399-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0399-1

Keywords

Navigation