Skip to main content

Advertisement

Log in

Advances in the management of subependymal giant cell astrocytoma

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Subependymal giant cell astrocytoma (SEGA) is the most common central nervous system tumor in patients with tuberous sclerosis complex (TSC). Although these lesions are generally benign and non-infiltrative, they commonly arise in the region of the foramen of Monro, where they can cause obstructive hydrocephalus and sudden death.

Methods

Surgical resection has been, and presently remains, the standard treatment for SEGAs demonstrating serial growth on neuroimaging in the setting of symptomatic hydrocephalus or progressive ventriculomegaly.

Discussion

Surgery can be curative; however, not all SEGAs are amenable to safe and complete resection. Gamma Knife stereotactic radiosurgery provides another treatment option but has highly variable response rates with limited data demonstrating its efficacy. Newer medical therapy targeting mammalian target of rapamycin (mTOR), the key protein kinase that is constitutively activated in TSC, has demonstrated promising results in recent clinical trials. In both case reports and clinical trials, treatment with mTOR inhibitors results in a significant reduction in SEGA volume and improvement or resolution of ventriculomegaly. This has led to the approval of everolimus for the treatment of SEGA in tuberous sclerosis patients who are not candidates for surgery. This review summarizes the surgical and medical management of SEGA in patients with TSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M (2009) Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16:691–696

    Article  PubMed  CAS  Google Scholar 

  2. Goh S, Butler W, Thiele EA (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63:1457–1461

    Article  PubMed  Google Scholar 

  3. Ichikawa T, Wakisaka A, Daido S, Takao S, Tamiya T, Date I, Koizumi S, Niida Y (2005) A case of solitary subependymal giant cell astrocytoma: two somatic hits of TSC2 in the tumor, without evidence of somatic mosaicism. J Mol Diagn 7:544–549

    Article  PubMed  CAS  Google Scholar 

  4. Kwiatkowska J, Wigowska-Sowinska J, Napierala D, Slomski R, Kwiatkowski DJ (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707

    Article  PubMed  CAS  Google Scholar 

  5. Hussain N, Curran A, Pilling D, Malluci CL, Ladusans EJ, Alfirevic Z, Pizer B (2006) Congenital subependymal giant cell astrocytoma diagnosed on fetal MRI. Arch Dis Child 91:520

    Article  PubMed  CAS  Google Scholar 

  6. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropsychiatrica 114:97–109

    Google Scholar 

  7. Cuccia V, Zuccaro G, Sosa F, Monges J, Lubienieky F, Taratuto AL (2003) Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst 19:232–243

    PubMed  Google Scholar 

  8. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811

    Article  PubMed  CAS  Google Scholar 

  9. de Ribaupierre S, Dorfmuller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60:83–89

    PubMed  Google Scholar 

  10. Kim SK, Wang KC, Cho BK, Jung HW, Lee YJ, Chung YS, Lee JY, Park SH, Kim YM, Choe G, Chi JG (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J Neurooncol 52:217–225

    Article  PubMed  CAS  Google Scholar 

  11. de Witt Hamer PC, Verstegen MJ, de Haan RJ, Vandertop WP, Thomeer RT, Mooij JJ, van Furth WR (2002) High risk of acute deterioration in patients harboring symptomatic colloid cysts of the third ventricle. J Neurosurg 96:1041–1045

    Article  PubMed  Google Scholar 

  12. Boogaarts HD, Decq P, Grotenhuis JA, Le GC, Nseir R, Jarraya B, Djindjian M, Beems T (2011) Long-term results of the neuroendoscopic management of colloid cysts of the third ventricle: a series of 90 cases. Neurosurgery 68:179–187

    Article  PubMed  Google Scholar 

  13. Beems T, Grotenhuis JA (2001) Subependymal giant-cell astrocytoma in tuberous sclerosis: endoscopic images and the implications for therapy. Minim Invasive Neurosurg 44:58–60

    Article  PubMed  CAS  Google Scholar 

  14. Cappabianca P, Cinalli G, Gangemi M et al (2008) Application of neuroendoscopy to intraventricular lesions. Neurosurgery 62(suppl 2):575–597

    PubMed  Google Scholar 

  15. Souweidane MM, Luther N (2006) Endoscopic resection of solid intraventricular brain tumors. J Neurosurg 105:271–278

    Article  PubMed  Google Scholar 

  16. Cai R, Di X (2010) Combined intra- and extra-endoscopic techniques for aggressive resection of subependymal giant cell astrocytomas. World Neurosurg 73:713–718

    Article  PubMed  Google Scholar 

  17. Wang LW, Shiau CY, Chung WY, Wu HM, Guo WY, Liu KD, Ho DM, Wong TT, Pan DH (2006) Gamma Knife surgery for low-grade astrocytomas: evaluation of long-term outcome based on a 10-year experience. J Neurosurg 105(suppl):127–132

    Google Scholar 

  18. Henderson MA, Fakiris AJ, Timmerman RD, Worth RM, Lo SS, Witt TC (2009) Gamma knife stereotactic radiosurgery for low-grade astrocytomas. Stereotact Funct Neurosurg 87:161–167

    Article  PubMed  Google Scholar 

  19. Park KJ, Kano H, Kondziolka D, Niranjan A, Flickinger JC, Lunsford LD (2011) Gamma Knife surgery for subependymal giant cell astrocytomas. Clinical article. J Neurosurg 114:808–813

    Article  PubMed  Google Scholar 

  20. Matsumura H, Takimoto H, Shimada N, Hirata M, Ohnishi T, Hayakawa T (1998) Glioblastoma following radiotherapy in a patient with tuberous sclerosis. Neurol Med Chir (Tokyo) 38:287–291

    Article  CAS  Google Scholar 

  21. Torres OA, Roach ES, Delgado MR, Sparagana SP, Sheffield E, Swift D, Bruce D (1998) Early diagnosis of subependymal giant cell astrocytoma in patients with tuberous sclerosis. J Child Neurol 13:173–177

    Article  PubMed  CAS  Google Scholar 

  22. Orlova KA, Crino PB (2010) The tuberous sclerosis complex. Ann N Y Acad Sci 1184:87–105

    Article  PubMed  CAS  Google Scholar 

  23. Franz DN (2011) Everolimus: an mTOR inhibitor for the treatment of tuberous sclerosis. Expert Rev Anticancer Ther 11:1181–1192

    Article  PubMed  CAS  Google Scholar 

  24. Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G, Dinopoulos A, Thomas G, Crone KR (2006) Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59:490–498

    Article  PubMed  CAS  Google Scholar 

  25. Koenig MK, Butler IJ, Northrup H (2008) Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol 23:1238–1239

    Article  PubMed  Google Scholar 

  26. Lam C, Bouffet E, Tabori U, Mabbott D, Taylor M, Bartels U (2010) Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 54:476–479

    Article  PubMed  Google Scholar 

  27. Birca A, Mercier C, Major P (2010) Rapamycin as an alternative to surgical treatment of subependymal giant cell astrocytomas in a patient with tuberous sclerosis complex. J Neurosurg Pediatr 6:381–384

    Article  PubMed  Google Scholar 

  28. Franz DN (2011) EXIST-1: effect of everolimus on subependymal giant cell astrocytoma in patients with tuberous sclerosis complex. Poster presented at: American Epilepsy Society Meeting; December 2–6, 2011; Baltimore, MD, USA

  29. Yalon M, Ben-Sira L, Constantini S, Toren A (2011) Regression of subependymal giant cell astrocytomas with RAD001 (everolimus) in tuberous sclerosis complex. Childs Nerv Syst 27:179–181

    Article  PubMed  Google Scholar 

  30. Kenerson H, Dundon TA, Yeung RS (2005) Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 57:67–75

    Article  PubMed  CAS  Google Scholar 

  31. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Byers A (2011) Long-term safety and efficacy results of oral everolimus in patients with subependymal giant cell astrocytomas (SEGA) in tuberous sclerosis complex (TSC). Poster presented at: 16th Annual Scientific Meeting & Education Day of the Society for Neuro-Oncology; November 17–20, 2011; Garden Grove, CA, USA

  32. Porta C, Ostanto S, Ravaud A, Climent MA, Vaishampayan U, White DA, Creel P, Dickow B, Fischer P, Gornell SS, Meloni F, Motzer RJ (2011) Management of adverse events associated with the use of everolimus in patients with advanced renal cell carcinoma. Eur J Cancer 47:1287–1298

    Article  PubMed  CAS  Google Scholar 

  33. Holmes GL, Stafstrom CE (2007) Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia 48:617–630

    Article  PubMed  Google Scholar 

  34. Muncy J, Butler IJ, Koenig MK (2009) Rapamycin reduces seizure frequency in tuberous sclerosis complex. J Child Neurol 24:477

    Article  PubMed  Google Scholar 

  35. Perek-Polnik M, Jozwiak S, Jurkiewicz E, Perek D, Kotulska K (2012) Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol 16:83–85

    Article  PubMed  Google Scholar 

  36. Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, Ramesh V, Silva AJ (2008) Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14:843–848

    Article  PubMed  CAS  Google Scholar 

  37. Zeng LH, Rensing NR, Wong M (2009) The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 29:6964–6972

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

Editorial support was provided by ApotheCom, which has been funded by Novartis Pharmaceuticals, Inc.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Beaumont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumont, T.L., Limbrick, D.D. & Smyth, M.D. Advances in the management of subependymal giant cell astrocytoma. Childs Nerv Syst 28, 963–968 (2012). https://doi.org/10.1007/s00381-012-1785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-012-1785-x

Keywords

Navigation