Skip to main content
Log in

Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Rice–wheat (R–W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R–W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R–W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251–334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107–132 per season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, A. Kumar, A. Padre, and M. Amante, 2009a: CO2/heat fluxes in rice fields: Comparative assessment of flooded and non-flooded fields in the Philippines. Agricultural and Forest Meteorology, 149(10), 1737–1750.

    Article  Google Scholar 

  • Alberto, M. C. R., R. Wassmann, T. Hirano, A. Miyata, R. Hatano, A. Kumar, A. Padre, and M. Amante, 2011: Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management, 98(9), 1417–1430.

    Article  Google Scholar 

  • Alton, P. B., 2008: Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural and Forest Meteorology, 148(10), 1641–1653.

    Article  Google Scholar 

  • Anthoni, P. M., A. Freibauer, O. Kolle, and E.-D. Schulze, 2004: Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology, 121(1–2), 55–67.

    Article  Google Scholar 

  • Aubinet, M., C. Moureaux, B. Bodson, D. Dufranne, B. Heinesch, M. Suleau, F. Vancutsem, and A. Vilret, 2009: Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. Agricultural and Forest Meteorology, 149(3–4), 407–418.

    Article  Google Scholar 

  • Baldocchi, D., 2008: TURNER REVIEW No. 15. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(1), 1–26.

    Article  Google Scholar 

  • Baldocchi, D., 2014: Measuring fluxes of trace gases and energy between ecosystems and the atmosphere-the state and future of the eddy covariance method. Global Change Biology, 20(12), 3600–3609.

    Article  Google Scholar 

  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82(11), 2415–2434.

    Article  Google Scholar 

  • Baldocchi, D. D., C. A. Vogel, and B. Hall, 1997: Seasonal variation of energy and water vapor exchange rates above and below a boreal jack pine forest canopy. J. Geophys. Res., 102(D24), 28 939–28 951.

    Article  Google Scholar 

  • Bao, X. Y., X. F. Wen, X. M. Sun, F. H. Zhao, and Y. Y. Wang, 2014: Interannual variation in carbon sequestration depends mainly on the carbon uptake period in two croplands on the North China Plain. PLOS One, 9(10), e110021. doi: 10.1371/journal.pone.0110021.

    Article  Google Scholar 

  • Barman, R., A. K. Jain, and M. L. Liang, 2014: Climate-driven uncertainties in modeling terrestrial energy and water fluxes: a site-level to global-scale analysis. Global Change Biology, 20(6), 1885–1900.

    Article  Google Scholar 

  • Bavin, T. K., T. J. Griffis, J. M. Baker, and R. T. Venterea, 2009: Impact of reduced tillage and cover cropping on the greenhouse gas budget of a maize/soybean rotation ecosystem. Agriculture, Ecosystem & Environment, 134(3–4), 234–242.

    Article  Google Scholar 

  • Beringer, J., L. B. Hutley, J. M. Hacker, B. Neininger, and K. T. Paw U, 2011: Patterns and processes of carbon, water and energy cycles across northern Australian landscapes: From point to region. Agriculture, Ecosystem & Environment, 151(11), 1409–1416.

    Google Scholar 

  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo, 1996: The land surface–atmosphere interaction: A review based on observational and global modeling perspectives. J. Geophys. Res., 101(D3), 7209–7225.

    Article  Google Scholar 

  • Béziat, P., E. Ceschia, and G. Dedieu, 2009: Carbon balance of a three crop succession over two cropland sites in South West France. Agricultural and Forest Meteorology, 149(10), 1628–1645.

    Article  Google Scholar 

  • Bhattacharyya, P., S. Neogi, K. S. Roy, P. K. Dash, R. Tripathi, and K. S. Rao, 2013: Net ecosystem CO2 exchange and carbon cycling in tropical lowland flooded rice ecosystem. Nutrient Cycling in Agroecosystems, 95(1), 133–144.

    Article  Google Scholar 

  • Chapin III, F. S., and Coauthors, 2006: Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041–1050.

    Article  Google Scholar 

  • Chen, Z., and Coauthors, 2013: Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agricultural and Forest Meteorology, 182, 266–276.

    Article  Google Scholar 

  • Curiel yuste, J., I. A. Janssens, A. Carrara, and R. Ceulemans, 2004: Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10(2), 161–169.

    Article  Google Scholar 

  • Dadson, S., M. Acreman, and R. Harding, 2013: Water security, global change and land-atmosphere feedbacks. Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences, 371(2002), doi: 10.1098/rsta.2012.0412.

    Google Scholar 

  • Davidson, E. A., L. V. Verchot, J. H. Cattanio, I. L. Ackerman, and J. E. M. Carvalho, 2000: Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia, Biogeochem., 48, 53–69, doi: 10.1023/A:1006204113917.

    Article  Google Scholar 

  • Dickinson, R. E., 1995: Land-atmosphere interaction. Rev. Geophys., 33(S2), 917–922.

    Article  Google Scholar 

  • Dufranne, D., C. Moureaux, F. Vancutsem, B. Bodson, and M. Aubinet, 2011: Comparison of carbon fluxes, growth and productivity of a winter wheat crop in three contrasting growing seasons. Agriculture, Ecosystems and Environment, 141(1–2), 133–142.

    Article  Google Scholar 

  • Entekhabi, D., 1995: Recent advances in land-atmosphere interaction research. Rev. Geophys., 33(S2), 995–1003.

    Article  Google Scholar 

  • Eugster, W., and Coauthors, 2010: Management effects on European cropland respiration. Agriculture, Ecosystems and Environment, 139(3), 346–362.

    Article  Google Scholar 

  • Falge, E., and Coauthors, 2001a: Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107(1), 43–69.

    Article  Google Scholar 

  • Falge, E., and Coauthors, 2001b: Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 107(1), 71–77.

    Article  Google Scholar 

  • Falge, E., and Coauthors, 2002: Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113(1–4), 53–74.

    Article  Google Scholar 

  • FAO, 2007: FAO Statiscal Databases. [Availble online at http://faostat.fao.org/.]

    Google Scholar 

  • Flanagan, L. B., L. A. Wever, and P. J. Carlson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8(7), 599–615.

    Article  Google Scholar 

  • Freedman, J. M., D. R. Fitzjarrald, K. E. Moore, and R. K. Sakai, 2001: Boundary layer clouds and vegetation-atmosphere feedbacks. J. Climate, 14(2), 180–197.

    Article  Google Scholar 

  • Gao, Z. Q., L. G. Bian, and X. J. Zhou, 2003: Measurements of turbulent transfer in the near-surface layer over a rice paddy in China. J. Geophys. Res., 108(D13), 4387–4387.

    Article  Google Scholar 

  • Garratt, J. R., 1994: The Atmospheric Boundary Layer, Cambridge University Press, 315 pp.

    Google Scholar 

  • Gilmanov, T. G., S. B. Verma, P. L. Sims, T. P. Meyers, J. A. Bradford, G. G. Burba, and A. E. Suyker, 2003: Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. Global Biogeochemical Cycles, 17(2), 1071–1088.

    Article  Google Scholar 

  • Gu, L. H., D. Baldocchi, S. B. Verma, T. A. Black, T. Vesala, E. M. Falge, and P. R. Dowty, 2002: Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res., 107(D6), ACL 2–1–ACL 2–23. dio: 10.1029/2001JD001242.

    Google Scholar 

  • Hollinger, D. Y., and Coauthors, 1998: Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agricultural and Forest Meteorology, 90(4), 291–306.

    Article  Google Scholar 

  • Hollinger, S. E., C. J. Bernacchi, and T. P. Meyers, 2005: Carbon budget of mature no-till ecosystem in North Central Region of the United States. Agricultural and Forest Meteorology, 130(1–2), 59–69.

    Article  Google Scholar 

  • Hossen, M., M. Mano, A. Miyata, M. Baten, and T. Hiyama, 2012: Surface energy partitioning and evapotranspiration over a double-cropping paddy field in Bangladesh. Hydrological Processes, 26(9), 1311–1320.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

    Google Scholar 

  • Kasurinen, V., and Coauthors, 2014: Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 20(11), 3439–3456.

    Article  Google Scholar 

  • Knohl, A., and D. D. Baldocchi, 2008: Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res., 113(G2), G02023.

    Google Scholar 

  • Kueppers, L. M., and M. A. Snyder, 2012: Influence of irrigated agriculture on diurnal surface energy and water fluxes, surface climate, and atmospheric circulation in California. Climate Dyn., 38(5–6), 1017–1029.

    Google Scholar 

  • Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113(1–4), 97–120.

    Article  Google Scholar 

  • Lal, R., 2004: Carbon emission from farm operations. Environment international, 30(7), 981–990.

    Article  Google Scholar 

  • Lei, H. M., and D.W. Yang, 2010: Seasonal and interannual variations in carbon dioxide exchange over a cropland in the North China Plain. Global Change Biology, 16(11), 2944–2957.

    Google Scholar 

  • Li, D., and E. Bou-Zeid, 2011: Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Bound.-Layer Meteor., 140(2), 243–262.

    Article  Google Scholar 

  • Li, D., E. Bou-Zeid, and H. A. De Bruin, 2012: Monin-obukhov similarity functions for the structure parameters of temperature and humidity. Bound.-Layer Meteor., 145(1), 45–67.

    Article  Google Scholar 

  • Li, J., and Coauthors, 2006: Carbon dioxide exchange and the mechanism of environmental control in a farmland ecosystem in North China Plain. Science in China Series (D): Earth Sciences, 49(2), 226–240.

    Article  Google Scholar 

  • Linquist, B., K. J. van Groenigen, M. A. Adviento-Borbe, C. Pittelkow, and C. van Kessel, 2012a: An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology, 18(1), 194–209.

    Article  Google Scholar 

  • Linquist, B. A., M. A. Adviento-Borbe, C. M. Pittelkow, C. van Kessel, and van K. J. Groenigen, 2012b: Fertilizer management practices and greenhouse gas emissions from rice systems: A quantitative review and analysis. Field Crops Research, 135, 10–21.

    Article  Google Scholar 

  • Liu, H. Z., G. Tu, C. B. Fu, and L. Q. Shi, 2008: Three-year variations of water, energy and CO2 fluxes of cropland and degraded grassland surfaces in a semi-arid area of Northeastern China. Adv. Atmos. Sci., 25(6), 1009–1020, doi: 10.1007/s00376-008-1009-1.

    Article  Google Scholar 

  • Ma, Y. M., and Coauthors, 2003: Remote sensing parameterization of land surface heat fluxes over arid and semi-arid areas. Adv. Atmos. Sci., 20(4), 530–539, doi: 10.1007/BF02915496.

    Article  Google Scholar 

  • Ma, Y. C., X. W. Kong, B. Yang, X. L. Zhang, X. Y. Yan, J. C. Yang, and Z. Q. Xiong, 2013: Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agriculture, Ecosystems and Environment, 164, 209–219.

    Article  Google Scholar 

  • Marquardt, D.W., 1963: An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.

    Article  Google Scholar 

  • Martano, P., 2000: Estimation of surface roughness length and displacement height from single-level sonic anemometer data. J. Appl. Meteor., 39(5), 708–715.

    Article  Google Scholar 

  • Maraseni, T. N., Cockfield, G., Apan, A., 2007: A comparison of greenhouse gas emissions from inputs into farm enterprises in Southeast Queensland, Australia. Journal of Environmental Science and Health, Part A 42, 11–19.

    Article  Google Scholar 

  • Massman, W. J., and X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113(1–4), 121–144.

    Article  Google Scholar 

  • Mauder, M., M. Cuntz, C. Drüe, A. Graf, C. Rebmann, H. P. Schmid, M. Schmidt, and R. Steinbrecher, 2013: A strategy for quality and uncertainty assessment of long-term eddycovariance measurements. Agricultural and Forest Meteorology, 169, 122–135.

    Article  Google Scholar 

  • Moffat, A. M., and Coauthors, 2007: Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147(3–4), 209–232.

    Article  Google Scholar 

  • Moureaux, C., A. Debacq, B. Bodson, B. Heinesch, and M. Aubinet, 2006: Annual net ecosystem carbon exchange by a sugar beet crop. Agricultural and Forest Meteorology, 139(1–2), 25–39.

    Article  Google Scholar 

  • Munger, J. W., and H. W. Loescher, 2004: Guidelines for making eddy covariance flux measurements. Ameriflux, Oakridge, TM, USA, Retrieved July, 14: 2005.

    Google Scholar 

  • Moore C. J., 1986: Frequency Response Corrections for Eddy Correlation Systems. Bound.-Layer Meteor., 37, 17–35.

    Article  Google Scholar 

  • Osborne, B. A., Saunders, M. J., Jones, M. B., Wattenbach, M., Smith, P., Walmsley, D., 2010: Key questions and uncertainties associated with the assessment of the cropland greenhouse gas balance. Agriculture, Ecosystem and Environment, 139, 293–301

    Article  Google Scholar 

  • Pielke, R. A., R. Avissar, M. Raupach, A. J. Dolman, X. B. Zeng, and A. S. Denning, 1998: Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology, 4(5), 461–475.

    Article  Google Scholar 

  • Reichstein, M., and Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9), 1424–1439.

    Article  Google Scholar 

  • Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey, 2013: Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169, 156–173.

    Article  Google Scholar 

  • Saito, M., A. Miyata, H. Nagai, and T. Yamada, 2005: Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agricultural and Forest Meteorology, 135(1–4), 93–109.

    Article  Google Scholar 

  • Schmidt, M., T. G. Reichenau, P. Fiener, and K. Schneider, 2012: The carbon budget of a winter wheat field: An eddy covariance analysis of seasonal and inter-annual variability. Agricultural and Forest Meteorology, 165, 114–126.

    Article  Google Scholar 

  • Smith, P., and Coauthors, 2010: Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystems and Environment, 139(3), 302–315.

    Article  Google Scholar 

  • Suyker, A. E., S. B. Verma, G. G. Burba, and T. J. Arkebauer, 2005: Gross primary production and ecosystem respiration of irrigated maize and irrigated soybean during a growing season. Agricultural and Forest Meteorology, 131(3–4), 180–190.

    Article  Google Scholar 

  • Tanaka, H., and Coauthors, 2007: Surface flux and atmospheric boundary layer observations from the LAPS project over the middle stream of the Huaihe River basin in China. Hydrological Processes, 21(15), 1997–2008.

    Article  Google Scholar 

  • Timsina, J., and D. J. Connor, 2001: Productivity and management of rice-wheat cropping systems: Issues and challenges. Field Crops Research, 69(2), 93–132.

    Article  Google Scholar 

  • Timsina, J., U. Singh, M. Badaruddin, C. Meisner, and M. R. Amin, 2001: Cultivar, nitrogen, and water effects on productivity, and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh. Field Crops Research, 72(2), 143–161.

    Article  Google Scholar 

  • Tong, X. J., P. Meng, J. S. Zhang, J. Li, N. Zheng, and H. Huang, 2012: Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos. Environ., 49, 257–267.

    Article  Google Scholar 

  • Tong, X., J. Li, Q. Yu, and Z. Lin, 2014: Biophysical controls on light response of net CO2 exchange in a winter wheat field in the North China Plain. PLOS One, 9(2), e89469.

    Article  Google Scholar 

  • Verma, S. B., and Coauthors, 2005: Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology, 131(1–2), 77–96.

    Article  Google Scholar 

  • Wagle, P., and V. G. Kakani, 2014: Environmental control of daytime net ecosystem exchange of carbon dioxide in switchgrass. Agriculture, Ecosystems and Environment, 186, 170–177.

    Article  Google Scholar 

  • Wang, J. Y., J. X. Jia, Z. Q. Xiong, M. A. K. Khalil, and G. X. Xing, 2011: Water regime-nitrogen fertilizer-straw incorporation interaction: Field study on nitrous oxide emissions from a rice agroecosystem in Nanjing, China. Agriculture, Ecosystems and Environment, 141(3–4), 437–446.

    Article  Google Scholar 

  • Wassmann, R., and M. S. Aulakh, 2000: The role of rice plants in regulating mechanisms of methane missions. Biology and Fertility of Soils, 31(1), 20–29.

    Article  Google Scholar 

  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quqrt. J. Roy. Meteor. Soc., 106(447), 85–100.

    Article  Google Scholar 

  • West, T. O., and G. Marland, 2002: A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agriculture, Ecosystems and Environment, 91(1), 217–232.

    Article  Google Scholar 

  • Xia, Y. L., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117(D3), doi: 10.1029/2011JD016048.

    Google Scholar 

  • Xie, B. H., and Coauthors, 2010: Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant and Soil, 326(1–2), 393–401.

    Google Scholar 

  • Xu, L. K., D. D. Baldocchi, and J. W. Tang, 2004: How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Global Biogeochemical Cycles, 18(4), GB4002. doi:10.1029/2004GB002281.

    Google Scholar 

  • Xu, Y. F., Y. Huang, and Y. C. Li, 2012: Summary of recent climate change studies on the carbon and nitrogen cycles in the terrestrial ecosystem and ocean in China. Adv. Atmos. Sci., 29(5), 1027–1047, doi: 10.1007/s00376-012-1206-9.

    Article  Google Scholar 

  • Yao, Z. S., X. H. Zheng, R. Wang, B. H. Xie, K. Butterbach-Bahl, and J. G. Zhu, 2013: Nitrous oxide and methane fluxes from a rice-wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos. Environ., 79, 641–649.

    Article  Google Scholar 

  • Yu, G.?R., and Coauthors, 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19(3), 798–810.

    Article  Google Scholar 

  • Zhang, Q., H.-M. Lei, and D.-W. Yang, 2013: Seasonal variations in soil respiration, heterotrophic respiration and autotrophic respiration of a wheat and maize rotation cropland in the North China Plain. Agricultural and Forest Meteorology, 180, 34–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, D., Gao, Z. et al. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain. Adv. Atmos. Sci. 32, 1365–1380 (2015). https://doi.org/10.1007/s00376-015-4253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-4253-1

Key words

Navigation