Skip to main content
Log in

Direct climatic effect of dust aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3)

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is −0.45 W m−2 in the solar spectrum and +0.09 W m−2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of −1.76 W m−2 and longwave forcing of +0.31 W m−2. As a result, dust aerosol causes the absorption of 1.1 W m−2 in the atmosphere. The RF of dust aerosol is predicted to lead to a surface cooling of 0.5 K over the Sahara Desert and Arabian Peninsula. In the meantime, the upper troposphere is predicted to become warmer because of the absorption by dust. These changes in temperature lead to a more stable atmosphere, which results in increases in surface humidity. The upward sensible and latent heat fluxes at the surface are reduced, largely balancing the surface energy loss caused by the backscattering and absorption of dust aerosol. Precipitation is predicted to decrease moderately on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman, S. A., and H. Chung, 1992: Radiative effects of airborne dust on regional energy budgets at the top of the atmosphere. J. Appl. Meteor., 31, 223–233.

    Article  Google Scholar 

  • Alpert, P., Y. J. Kaufman, Y. Shay-El, D. Tanre, A. d. Silva, S. Schubert, and J. H. Joseph, 1998: Quantification of dust-forced heating of the lower troposphere. Nature, 395, 367–370.

    Article  Google Scholar 

  • Carlson, T. N., and S. G. Benjamin, 1980: Radiative heating rates for Saharan dust. J. Atmos. Sci., 37, 193–213.

    Article  Google Scholar 

  • Cautenet, G., M. Legrand, S. Cautenet, B. Bonnel, and G. Brogniez, 1991: Thermal impact of Saharan dust over land. Part I: Simulation. J. Appl. Meteor., 31, 166–180.

    Article  Google Scholar 

  • Christopher, S. A., and T. Jones, 2007: Satellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean. Geophys. Res. Lett., 34, L02810, doi: 02810.01029/02006GL027783.

    Article  Google Scholar 

  • Claquin, T., M. Schulz, Y. Balkanski, and O. Boucher, 1998: Uncertainties in assessing radiative forcing by mineral dust. Tellus (B), 50, 491–505.

    Article  Google Scholar 

  • Collins, W. D., P. J. Rasch, B. E. Eaton, B. V. Khattatov, J. F. Lamarque, and C. S. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. J. Geophys. Res., 106, 7313–7336.

    Article  Google Scholar 

  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Technical Note NCAR/TN-464+STR, NCAR, Boulder, CO, 226pp.

    Google Scholar 

  • Dufresne, J.-L., C. Gautier, P. Ricchiazzi, and Y. Fouquart, 2002: Longwave scattering effects of mineral aerosols. J. Atmos. Sci., 59, 1959–1966.

    Article  Google Scholar 

  • Forster, P., and Coauthors, 2007: Changes in Atmospheric Constituents and in Radiative Forcing. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessmen Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 131–217.

  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20255–20273.

    Article  Google Scholar 

  • Haywood, J., and Coauthors, 2003: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res., 108, 8577, doi: 8510.1029/2002JD002687.

    Article  Google Scholar 

  • Huang, J., and Coauthors, 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmospheric Chemistry and Physics Discussion, 9, 5967–6001.

    Article  Google Scholar 

  • Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J. Geophys. Res., 106, 1551–1568.

    Article  Google Scholar 

  • Kaufman, Y. J., D. Tanré, O. Dubovik, A. Karnieli, and L. A. Remer, 2001: Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophys. Res. Lett., 28, 1479–1482.

    Article  Google Scholar 

  • Kim, M. K., W. K. M. Lau, M. Chin, K. M. Kim, Y. C. Sud, and G. K. Walker, 2006: Atmospheric teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring. J. Climate, 19, 4700–4718.

    Article  Google Scholar 

  • Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res., 103, 31637–31645.

    Article  Google Scholar 

  • Liao, H., J. H. Seinfeld, P. J. Adams, and L. J. Mickley, 2004: Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model. J. Geophys. Res., 109, D16207, doi: 16210.11029/12003JD004456.

    Article  Google Scholar 

  • Liu, W., Q. Feng, T. Wang, Y. W. Zhang, and J. H. Shi, 2004: Physicochemistry and mineralogy of storm dust and dust sediment in northern China. Adv. Atmos. Sci., 21, 775–783.

    Article  Google Scholar 

  • Markowicz, K. M., P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, 2003: Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere. Quart. J. Roy. Meteor. Soc., 129, 2927–2947.

    Article  Google Scholar 

  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 3247–3267.

    Article  Google Scholar 

  • Miller, R. L., I. Tegen, and J. Perlwitz, 2004a: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109, D04203, doi: 04210.01029/02003JD004085.

    Article  Google Scholar 

  • Miller, R. L., J. Perlwitz, and I. Tegen, 2004b: Feedback upon dust emission by dust radiative forcing through the planetary boundary layer. J. Geophys. Res., 109, D24209, doi: 24210.21029/22004JD004912.

    Article  Google Scholar 

  • Myhre, G., and F. Stordal, 2001: Global sensitivity experiments of the radiative forcing due to mineral aerosols. J. Geophys. Res., 106, 18193–18204.

    Article  Google Scholar 

  • Penner, J. E., and Coauthors, 2001: Aerosols: Their direct and indirect effects. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 291–336.

  • Perlwitz, J., I. Tegen, and R. L. Miller, 2001: Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res., 106, 18167–18192.

    Article  Google Scholar 

  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, doi: 1010.1029/2000RG000095.

    Article  Google Scholar 

  • Ramanathan, V., and M. V. Ramana, 2005: Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys., 162, 1609–1626.

    Article  Google Scholar 

  • Rasch, P. J., N. M. Mahowald, and B. E. Eaton, 1997: Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short-lived and soluble species. J. Geophys. Res., 102, 28127–28138.

    Article  Google Scholar 

  • Reddy, M. S., O. Boucher, N. Bellouin, M. Schulz, Y. Balkanski, J. L. Dufresne, and M. Pham, 2005a: Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Meteorologie Dynamique general circulation model. J. Geophys. Res., 110, D10S16, doi: 10.1029/2004JD004757.

    Article  Google Scholar 

  • Reddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz, 2005b: Aerosol optical depths and direct radiative perturbations by species and source type. Geophys. Res. Lett., 32, L12803, doi: 12810.11029/12004GL021743.

    Article  Google Scholar 

  • Sassen, K., 2002: Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett., 29, 1465, doi: 1410.1029/2001GL014051.

    Article  Google Scholar 

  • Satheesh, S. K., C. B. S. Dutt, J. Srinivasan, and U. R. Rao, 2007: Atmospheric warming due to dust absorption over Afro-Asian regions. Geophys. Res. Lett., 34, L04805, doi: 04810.01029/02006GL028623.

    Article  Google Scholar 

  • Shell, K. M., and R. C. J. Somerville, 2007: Direct radiative effect of mineral dust and volcanic aerosols in a simple aerosol climate model. J. Geophys. Res., 112, D03206, doi: 03210.01029/02006JD007198.

    Article  Google Scholar 

  • Shi, G., H. Wang, B. Wang, W. Li, S. Gong, and T. Zhao, 2005: Sensitivity experiments on the effects of optical properties of dust aerosols on their radiative forcing under clear sky condition. J. Meteor. Soci. Japan, 83A, 333–346.

    Article  Google Scholar 

  • Shi, G., B. Wang, H. Zhang, J. Zhao, S. Tan, and T. Wen, 2008: The radiative and climatic effects of atmospheric aerosols. Chinese J. Atmos. Sci., 32, 826–840. (in Chinese)

    Google Scholar 

  • Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683.

    Article  Google Scholar 

  • Sokolik, I. N., and O. B. Toon, 1999: Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res., 104, 9423–9444.

    Article  Google Scholar 

  • Tanaka, T. Y., T. Aoki, H. Takahashi, K. Shibata, A. Uchiyama, and M. Mikami, 2007: Study of the sensitivity of optical properties of mineral dust to the direct aerosol radiative perturbation using a global aerosol transport model. SOLA, 3, 33–36.

    Article  Google Scholar 

  • Tegen, I., and A. A. Lacis, 1996: Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res., 101, 19237–19244.

    Article  Google Scholar 

  • Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 23895–23916.

    Article  Google Scholar 

  • Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, and B. Holben, 2002: A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements. J. Atmos. Sci., 59, 398–413.

    Article  Google Scholar 

  • Wang, Z., H. Ueda, and M. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res., 105, 26947–26959.

    Article  Google Scholar 

  • Weaver, C. J., P. Ginoux, N. C. Hsu, M.-D. Chou, and J. Joiner, 2002: Radiative Forcing of Saharan Dust: GOCART Model Simulations Compared with ERBE Data. J. Atmos. Sci., 59, 736–747.

    Article  Google Scholar 

  • Woodward, S., 2001: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106, 18155–18166.

    Article  Google Scholar 

  • Wu, J., C. B. Fu, W. M. Jiang, H.N. Liu, and R.H. Zhao, 2005: A preliminary simulation study of direct radiative forcing of mineral dust aerosol over the East Asia region. Chinese J. Geophys., 48, 1250–1260. (in Chinese)

    Google Scholar 

  • Xie, J. X., and X. A. Xia, 2008: Long-term trend in aerosol optical depth from 1980 to 2001 in north China. Particuology, 6, 106–111.

    Article  Google Scholar 

  • Yoshioka, M., N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender, and D. B. Coleman, 2007: Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes, and greenhouse gas warming. J. Climate, 20, 1445–1467.

    Article  Google Scholar 

  • Yue, X., H. Wang, Z. Wang, and K. Fan, 2009: Simulation of dust aerosol radiative feedback using the Global Transport Model of Dust: 1. Dust cycle and validation. J. Geophys. Res., 114, D10202, doi: 10210.11029/12008JD010995.

    Article  Google Scholar 

  • Zender, C. S., H. Bian, and D. Newman, 2003: Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology. J. Geophys. Res., 108, 4416, doi: 4410.1029/2002JD002775.

    Article  Google Scholar 

  • Zhang, H. M., and M. F. Modest, 2002: Evaluation of the Planck-mean absorption coefficients from HITRAN and HITEMP databases. Journal of Quantitative Spectroscopy and Radiative Transfer, 73, 649–653.

    Article  Google Scholar 

  • Zhou, Z., X. Wang, and R. Niu, 2002: Climate characteristics of sandstorm in China in recent 47 years. Journal of Applied Meteorological Science, 13, 193–200. (in Chinese)

    Google Scholar 

  • Zhou, Z. J., and G. C. Zhang, 2003: Typical severe dust storms in northern China during 1954–2002. Chinese Science Bulletin, 48, 2366–2370.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yue  (乐 旭).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, X., Wang, H., Liao, H. et al. Direct climatic effect of dust aerosol in the NCAR Community Atmosphere Model Version 3 (CAM3). Adv. Atmos. Sci. 27, 230–242 (2010). https://doi.org/10.1007/s00376-009-8170-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8170-z

Key words

Navigation