Skip to main content
Log in

Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Virtual reality (VR) medical simulators with visual and haptic feedback provide an efficient and cost-effective alternative without any risk to the traditional training approaches. Electrocautery is one of the essential training tasks in laparoscopic cholecystectomy. In order to achieve a high fidelity with visual realism in electrocautery simulation, we propose a physical-based solution to handle the soft tissue deformation and topology change which occurs due to the heat generated by electro-hook. The whole computation is built on discrete particles. For cholecystectomy simulation, the first task is to remove the fat tissue which wraps the cystic artery and duct with electro-hook. We use a meshfree method to handle the fat tissue deformation which based on continuum elasticity equations. And a meshfree dissection model is also introduced to handle the thermal transmission when electro-hook touches the fat surface. Both models are implemented on GPU to achieve real-time performance. The visual performance and computational cost of the proposed method are properly evaluated and compared with other popularly used approaches. From the experimental results, our electrocautery simulation can achieve real-time performance with high degree of realism and fidelity. This technique has also been adopted in our developed VR-based laparoscopic surgery simulator, which has been tested and verified by laparoscopic surgeons through a pilot study. Surgeons believed that the visual performance is realistic and helpful to enhance laparoscopic electrocautery skills. Our system exhibits the potentials to improve the surgical skills of medical practitioners during their training sessions and effectively shorten their learning curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Veldkamp, R., Kuhry, E., Hop, W.C., Jeekel, J., Kazemier, G., Bonjer, H.J., Haglind, E., Påhlman, L., Cuesta, M.A., Msika, S., Morino, M., Lacy, A.M.: Laparoscopic surgery versus open surgery for colon cancer: short-term outcomes of a randomisedtrial. Lancet Oncol 6(7), 477–484 (2005). https://doi.org/10.1016/s1470-2045(05)70221-7

    Article  Google Scholar 

  2. Simbionix simulation. 3D Systems (2017). http://simbionix.com/simulators/. Accessed 16 June 2018

  3. LapSim haptic system. Surgical science (2018). http://www.surgical-science.com/. Accessed 16 June 2018

  4. Jugenheimer, M.: Laparoscopic Cholecystectomy (Operation Primers). Springer, New York (2009)

    Google Scholar 

  5. PrzemyslawKorzeniowski, A.B., Sodergren, M.H., Hald, N., Bello, F.: NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator. Int. J. Comput. Assist. Radiol. Surg. 11(12), 12 (2016). https://doi.org/10.1007/s11548-016-1401-8)

    Google Scholar 

  6. Pan, J.J., Chang, J., Yang, X., Zhang, J.J., Qureshi, T., Howell, R., Hickish, T.: Graphic and haptic simulation system for virtual laparoscopic rectum surgery. Int J Med Robot 7(3), 304–317 (2011). https://doi.org/10.1002/rcs.399

    Google Scholar 

  7. Yuan, Z.Y., Ding, Y.H., Zhang, Y.Y., Zhao, J.H.: Real-time simulation of tissue cutting with CUDA Based on GPGPU. Adv. Mater. Res. 121–122, 154–161 (2010). https://doi.org/10.4028/www.scientific.net/AMR.121-122.154

    Article  Google Scholar 

  8. Wang, M., Yuzheng, M.: A review of virtual cutting methods and technology in deformable objects. Int. J. Med. Robot. Comput. Assist. Surg. 14(5), e1923 (2018)

    Article  Google Scholar 

  9. Muller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 9 (2007)

    Article  Google Scholar 

  10. Yuan Sui, J., Pan, H.Q., Liu, H., Yun, L.: Real-time simulation of soft tissue deformation and electrocautery procedures. Int. J. Med. Robot. Comput. Assist. Surg. (2017). https://doi.org/10.1002/rcs.1827

    Google Scholar 

  11. Pan, J., Bai, J., Zhao, X., Hao, A., Qin, H.: Real-time haptic manipulation and cutting of hybrid soft tissue models by extended position-based dynamics. Comput. Anim. Virtual Worlds 26(3–4), 321–335 (2015). https://doi.org/10.1002/cav.1655

    Article  Google Scholar 

  12. Pan, J., Yan, S., Qin, H., Hao, A.: Real-time dissection of organs via hybrid coupling of geometric metaballs and physics-centric mesh-free method. Visual Comput. (2016). https://doi.org/10.1007/s00371-016-1317-x

    Google Scholar 

  13. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M.H., Alexa, M.: Point based animation of elastic, plastic and melting objects. In: Symposium on Computer Animation (2004) https://doi.org/10.1145/1028523.1028542

  14. Joldes, G.R., Wittek, A., Miller, K.: An adaptive dynamic relaxation method for solving nonlinear finite element problems application to brain shift estimation. Int. J. Numer. Methods Biomed. Eng. 27(2), 173–185 (2011). https://doi.org/10.1002/cnm.1407

    Article  MathSciNet  MATH  Google Scholar 

  15. Zou, Y., Liu, P.X.: A high-resolution model for soft tissue deformation based on point primitives. Comput. Methods Programs Biomed. 148, 113–121 (2017). https://doi.org/10.1016/j.cmpb.2017.06.013

    Article  Google Scholar 

  16. Zou, Y., Liu, P.X., Cheng, Q., Lai, P., Li, C.: A new deformation model of biological tissue for surgery simulation. IEEE Trans. Cybern. 47(11), 3494–3503 (2017). https://doi.org/10.1109/TCYB.2016.2560938

    Article  Google Scholar 

  17. Dodde, R.E., Miller, S.F., Shih, A.J., Geiger, J.D.: Thermal-electric finite element analysis of electrosurgical cautery process. ASME Int. Manuf. Sci. Eng. 1, 2 (2007). https://doi.org/10.1115/msec2007-31153

    Google Scholar 

  18. Lu, Z., Arikatla, V.S., Han, Z., Allen, B.F., De, S.: A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery. Int. J. Med. Robot. 10(4), 495–504 (2014). https://doi.org/10.1002/rcs.1561

    Article  Google Scholar 

  19. Kim, Y., Lee, S., Roy, F., Lee, D., Kim, L., Park, S.H.: Carving mesh with deformation for soft tissue removal simulation. In: Mesh Processing in Medical Image Analysis. Springer, Berlin (2012) https://doi.org/10.1007/978-3-642-33463-4_8

  20. Kim, Y., Kim, L., Lee, D., Shin, S., Cho, H., Roy, F., Park, S.H.: Deformable mesh simulation for virtual laparoscopic cholecystectomy training. Visual Comput. 31(4), 10 (2015). https://doi.org/10.1007/s00371-014-0944-3

    Article  Google Scholar 

  21. Jin, X., Joldes, G.R., Miller, K., Yang, K.H., Wittek, A.: Meshless algorithm for soft tissue cutting in surgical simulation. Comput. Methods Biomech. Biomed. Eng. 17(7), 800–811 (2014). https://doi.org/10.1080/10255842.2012.716829

    Article  Google Scholar 

  22. Jin, X., Joldes, G.R., Miller, K., Wittek, A.: 3D Algorithm for simulation of soft tissue cutting. Computational Biomechanics for Medicine: Models, Algorithms and Implementation (2013). https://doi.org/10.1007/978-1-4614-6351-1_6

  23. Qiang, C., et al.: An interactive meshless cutting model for nonlinear viscoelastic soft tissue in surgical simulators. In: IEEE Access, pp. 16359–16371 (2017)

  24. Berndt, I.U., Torchelsen, R., Maciel, A.: Efficient surgical cutting with position-based dynamics. IEEE Comput. Graph. Appl. 37(3), 24–31 (2017)

    Article  Google Scholar 

  25. ZYGOTE: 3D science (2011). http://www.3dscience.com/3D_Models/index.php

  26. Iwasaki, K., Uchida, H., Dobashi, Y., Nishita, T.: Fast particle-based visual simulation of ice melting. Comput. Graph. Forum 29(7), 2215–2223 (2010). https://doi.org/10.1111/j.1467-8659.2010.01810.x

    Article  Google Scholar 

  27. Muller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. ACM SIGGRAPH:6 (2003). https://doi.org/10.2312/sca03/154-159

  28. Gao, Y., Li, S., Yang, L., Qin, H., Hao, A.: An efficient heat-based model for solid-liquid-gas phase transition and dynamic interaction. Graph. Models 94, 14–24 (2017). https://doi.org/10.1016/j.gmod.2017.09.001

    Article  MathSciNet  Google Scholar 

  29. Nguyen, H.: GPU Gems 3. Addison-Wesley, Lebanon (2007). ISBN 0321515269

  30. Green, S.: Particle Simulation Using CUDA. NVIDIA Whitepaper (2010)

  31. Babuska, I., Oden, J.T.: Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193(36), 4057–4066 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schwer, L.E.: Guide for Verification and Validation in Computational Solid Mechanics. In: SMiRT 20, Espoo (Helsinki), Finland (2009)

Download references

Funding

This research has been supported by National Key R&D Program of China (Grant No. 2018YFC0115102), National Nature Science Foundation of China (Grant Nos. 61532002, 61672149, 61872020, 61872347), NSF IIS-1715985, NSF IIS-1812606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Pan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Yang, Y., Gao, Y. et al. Real-time simulation of electrocautery procedure using meshfree methods in laparoscopic cholecystectomy. Vis Comput 35, 861–872 (2019). https://doi.org/10.1007/s00371-019-01680-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01680-z

Keywords

Navigation