Skip to main content
Log in

Parallelized egocentric fields for autonomous navigation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we propose a general framework for local path-planning and steering that can be easily extended to perform high-level behaviors. Our framework is based on the concept of affordances: the possible ways an agent can interact with its environment. Each agent perceives the environment through a set of vector and scalar fields that are represented in the agent’s local space. This egocentric property allows us to efficiently compute a local space-time plan and has better parallel scalability than a global fields approach. We then use these perception fields to compute a fitness measure for every possible action, defined as an affordance field. The action that has the optimal value in the affordance field is the agent’s steering decision. We propose an extension to a linear space-time prediction model for dynamic collision avoidance and present our parallelization results on multicore systems. We analyze and evaluate our framework using a comprehensive suite of test cases provided in SteerBench and demonstrate autonomous virtual pedestrians that perform steering and path planning in unknown environments along with the emergence of high-level responses to never seen before situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altun, K., Koku, A.: Evaluation of egocentric navigation methods. In: IEEE International Workshop on Robot and Human Interactive Communication (ROMAN 2005), pp. 396–401 (2005). doi:10.1109/ROMAN.2005.1513811

    Chapter  Google Scholar 

  2. Arkin, R.: Motor schema based navigation for a mobile robot: An approach to programming by behavior. In: IEEE International Conference on Robotics and Automation. Proceedings, 1987, vol. 4, pp. 264–271 (1987). doi:10.1109/ROBOT.1987.1088037

    Google Scholar 

  3. Boulic, R.: Relaxed steering towards oriented region goals. In: Motion in Games, First International Workshop, pp. 176–187 (2008)

    Chapter  Google Scholar 

  4. Chao, G., Dyer, M.: Concentric spatial maps for neural network based navigation. In: Ninth International Conference on Artificial Neural Networks (ICANN 99) (Conf. Publ. No. 470), vol. 1, pp. 144–149 (1999)

    Chapter  Google Scholar 

  5. Chenney, S.: Flow tiles. In: Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation (2004). doi:http://doi.acm.org/10.1145/1028523.1028553

    Google Scholar 

  6. Clements, R.R., Hughes, R.L.: Mathematical modelling of a medieval battle: the battle of Agincourt, 1415. Math. Comput. Simul. 64(2), 259–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality of a*. J. ACM 32(3), 505–536 (1985). doi:http://doi.acm.org/10.1145/3828.3830

    Article  MathSciNet  MATH  Google Scholar 

  8. Farenc, N., Schweiss, E., Kallmann, M., Aune, O., Boulic, R., Thalmann, D.: A paradigm for controlling virtual humans in urban environment simulations. Appl. Artif. Intell. 14, 69–91 (1999)

    Article  Google Scholar 

  9. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). doi:10.1177/027836499801700706. URL http://ijr.sagepub.com/cgi/content/abstract/17/7/760

    Article  Google Scholar 

  10. Fleming, P.: Implementing a robust 3 dimensional egocentric navigation system. Master’s thesis, Graduate School of Vanderbilt University (2005)

  11. Gibson, J.J.: The theory of affordances. In: Perceiving, Acting, and Knowing (1977)

    Google Scholar 

  12. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., Goswami, A.: Scalable nonlinear dynamical systems for agent steering and crowd simulation (2001)

  13. Greeno, J.G.: Gibson’s affordances. Psychol. Rev. 336–342 (1994)

  14. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). doi:10.1109/TSSC.1968.300136

    Article  Google Scholar 

  15. Hart, P.E., Nilsson, N.J., Raphael, B.: Correction to “a formal basis for the heuristic determination of minimum cost paths”. SIGART Bull. 37, 28–29 (1972). doi:http://doi.acm.org/10.1145/1056777.1056779

    Article  Google Scholar 

  16. Heck, R., Gleicher, M.: Parametric motion graphs. In: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D ’07, pp. 129–136. ACM, New York (2007). doi:http://doi.acm.org/10.1145/1230100.1230123

    Chapter  Google Scholar 

  17. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282–4286 (1995). doi:10.1103/PhysRevE.51.4282

    Article  Google Scholar 

  18. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transp. Sci. 39(1), 1–24 (2005). doi:10.1287/trsc.1040.0108

    Article  Google Scholar 

  19. Hoogendoorn, S.P.: Pedestrian travel behavior modeling. In: 10th International Conference on Travel Behavior Research, Lucerne, pp. 507–535 (2003)

    Google Scholar 

  20. Kant, K., Zucker, S.W.: Planning collision-free trajectories in time-varying environments: a two-level hierarchy. Vis. Comput. 3(5), 304–313 (1988)

    Article  Google Scholar 

  21. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09, pp. 215–223. ACM, New York (2009). doi:http://doi.acm.org/10.1145/1507149.1507185

    Chapter  Google Scholar 

  22. Lamarche, F., Donikian, S.: Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. In: Computer Graphics Forum, vol. 23 (2004)

    Google Scholar 

  23. Lee, K.H., Choi, M.G., Hong, Q., Lee, J.: Group behavior from video: a data-driven approach to crowd simulation. In: Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 109–118 (2007)

    Google Scholar 

  24. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26(3), 655–664 (2007)

    Article  Google Scholar 

  25. Li, T.Y., Chen, P.F., Huang, P.Z.: Motion planning for humanoid walking in a layered environment. In: Proceedings of IEEE ICRA, vol. 3, pp. 3421–3427 (2003). doi:10.1109/ROBOT.2003.1242119

    Google Scholar 

  26. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behaviour in dense urban environments using local laws. In: TPCG ’03: Proceedings of the Theory and Practice of Computer Graphics 2003, p. 122. IEEE Comput. Soc., Washington (2003)

    Chapter  Google Scholar 

  27. Lovas, G.: Modeling and simulation of pedestrian traffic flow. In: Transportation Research Record, pp. 429–443 (1994)

    Google Scholar 

  28. Michael, D., Chrysanthou, Y.: Automatic high level avatar guidance based on affordance of movement. In: Eurographics 2003. Eurographics Association, Geneva (2003)

    Google Scholar 

  29. Milazzo, J., Rouphail, N., Hummer, J., Allen, D.: The effect of pedestrians on the capacity of signalized intersections. In: Transportation Research Record, pp. 37–46 (1998)

    Google Scholar 

  30. Paris, S., Pettré, J., Donikian, S.: Pedestrian reactive navigation for crowd simulation: a predictive approach. In: EUROGRAPHICS 2007, vol. 26, pp. 665–674 (2007)

    Google Scholar 

  31. Paris, S., Gerdelan, A., O’Sullivan, C.: Ca-lod: Collision avoidance level of detail for scalable, controllable crowds. In: MIG ’09: Proceedings of the 2nd International Workshop on Motion in Games, pp. 13–28. Springer, Berlin (2009)

    Google Scholar 

  32. Park, S.I., Shin, H.J., Shin, S.Y.: On-line locomotion generation based on motion blending. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’02, pp. 105–111. ACM, New York (2002). doi:http://doi.acm.org/10.1145/545261.545279

    Chapter  Google Scholar 

  33. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-density crowd simulation. In: Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 99–108 (2007)

    Google Scholar 

  34. Pelechano, N., Allbeck, J., Badler, N.: Virtual Crowds: Methods, Simulation, and Control. Synthesis Lectures on Computer Graphics and Animation. Morgan & Claypool Publishers, San Francisco (2008)

    Google Scholar 

  35. Quinn, M.J., Metoyer, R.A., Hunter-zaworski, K.: Parallel implementation of the social forces model. In: Proceedings of the Second International Conference in Pedestrian and Evacuation Dynamics, pp. 63–74 (2003)

    Google Scholar 

  36. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In: Proceedings of ACM SIGGRAPH, pp. 25–34. ACM, New York (1987)

    Google Scholar 

  37. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers Conference (1999)

    Google Scholar 

  38. Rodrigues, R.A., Lima Bicho, A., Paravisi, M., Jung, C.R., Magalhães, L.P., Musse, S.R.: Tree paths: A new model for steering behaviors. In: Proceedings of the 9th International Conference on Intelligent Virtual Agents, IVA ’09, pp. 358–371. Springer, Berlin (2009)

    Google Scholar 

  39. Rudomín, I., Millán, E., Hernández, B.: Fragment shaders for agent animation using finite state machines. Simul. Model. Pract. Theory 13(8), 741–751 (2005)

    Article  Google Scholar 

  40. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Animation, pp. 19–28 (2005)

    Chapter  Google Scholar 

  41. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graph. Models 69, 246–274 (2007). doi:10.1016/j.gmod.2007.09.001. URL http://portal.acm.org/citation.cfm?id=1323742.1323926

    Article  Google Scholar 

  42. Shapiro, A., Kallmann, M., Faloutsos, P.: Interactive motion correction and object manipulation. In: I3D ’07: Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, pp. 137–144. ACM, New York (2007). doi:http://doi.acm.org/10.1145/1230100.1230124

    Chapter  Google Scholar 

  43. Shimoda, S., Kuroda, Y., Iagnemma, K.: Potential field navigation of high speed unmanned ground vehicles on uneven terrain. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation (ICRA 2005), pp. 2828–2833 (2005)

    Chapter  Google Scholar 

  44. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: An open framework for developing, evaluating, and sharing steering algorithms. In: MIG ’09: Proceedings of the 2nd International Workshop on Motion in Games, pp. 158–169. Springer, Berlin (2009)

    Google Scholar 

  45. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: Steerbench: a benchmark suite for evaluating steering behaviors. In: Computer Animation and Virtual Worlds, pp. 533–548 (2009)

    Google Scholar 

  46. Singh, S., Kapadia, M., Reinmann, G., Faloutsos, P.: On the interface between steering and animation for autonomous characters. In: Workshop on Crowd Simulation, Computer Animation and Social Agents, Saint-Malo, France (2010)

    Google Scholar 

  47. Singh, S., Kapadia, M., Hewlett, W., Reinmann, G., Faloutsos, P.: A modular framework for adaptive agent-based steering. In: Proceedings of the 2011 Symposium on Interactive 3D Graphics and Games, I3D ’11. ACM, New York (2011)

    Google Scholar 

  48. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time navigation of independent agents using adaptive roadmaps. In: VRST ’07: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, pp. 99–106. ACM, New York (2007)

    Chapter  Google Scholar 

  49. Surasmith, S.: Preprocessed solution for open terrain navigation. In: AI Game Programming Wisdom, pp. 161–170 (2002)

    Google Scholar 

  50. Takeuchi, R., Unuma, M., Amakawa, K.: Path planning and its application to human animation system. In: Creating and Animating the Virtual World, pp. 163–175. Springer, New York (1992). URL http://portal.acm.org/citation.cfm?id=141248.141259

    Chapter  Google Scholar 

  51. Tecchia, F., Loscos, C., Conroy, R., Chrysanthou, Y.: Agent behaviour simulator (abs): A platform for urban behaviour development. In: GTEC’2001, pp. 17–21 (2001)

    Google Scholar 

  52. Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, Berlin (2007)

    Google Scholar 

  53. Torrens, D.P.M.: Behavioral intelligence for geospatial agents in urban environments. In: IAT ’07: Proceedings of the 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 63–66. IEEE Comput. Soc., Washington (2007). doi:10.1109/IAT.2007.37

    Chapter  Google Scholar 

  54. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3), 1160–1168 (2006). doi:http://doi.acm.org/10.1145/1141911.1142008

    Article  Google Scholar 

  55. Trovato, K.I., Dorst, L.: Differential a*. IEEE Trans. Knowl. Data Eng. 14(6), 1218–1229 (2002). doi:10.1109/TKDE.2002.1047763

    Article  Google Scholar 

  56. Tsubouchi, T., Kuramochi, S., Arimoto, S.: Iterated forecast and planning algorithm to steer and drive a mobile robot in the presence of multiple moving objects. In: IROS ’95: Proceedings of the International Conference on Intelligent Robots and Systems, vol. 2, p. 2033. IEEE Comput. Soc., Washington (1995)

    Google Scholar 

  57. Turner, A., Penn, A.: Encoding natural movement as an agent-based system: an investigation into human pedestrian behaviour in the built environment. Environ. Plan. B, Plan. Des. 29, 473–490 (2002). http://eprints.ucl.ac.uk/73/

    Article  Google Scholar 

  58. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation, pp. 1928–1935. IEEE Press, New York (2008)

    Chapter  Google Scholar 

  59. van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navigation of multiple agents in crowded environments. In: SI3D ’08: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games, pp. 139–147. ACM, New York (2008)

    Chapter  Google Scholar 

  60. Warren, C.: Global path planning using artificial potential fields. In: Proceedings of IEEE ICRA, vol. 1, pp. 316–321 (1989). doi:10.1109/ROBOT.1989.100007

    Google Scholar 

  61. Warren, C.: Multiple robot path coordination using artificial potential fields. In: Proceedings of IEEE ICRA, vol. 1, pp. 500–505 (1990). doi:10.1109/ROBOT.1990.126028

    Google Scholar 

Download references

Acknowledgements

The work in this paper was partially supported by Intel through a Visual Computing grant, and the donation of a 32-core Emerald Ridge system with Xeon processors X7560. In particular, we would like to thank Randi Rost, Scott Buck, and Mitchell Lum from Intel for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubbasir Kapadia.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 57.7 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapadia, M., Singh, S., Hewlett, W. et al. Parallelized egocentric fields for autonomous navigation. Vis Comput 28, 1209–1227 (2012). https://doi.org/10.1007/s00371-011-0669-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-011-0669-5

Keywords

Navigation