Skip to main content

Advertisement

Log in

The Nevai Condition

  • Published:
Constructive Approximation Aims and scope

Abstract

We study Nevai’s condition that for orthogonal polynomials on the real line, \(K_{n}(x,x_{0})^{2}K_{n}(x_{0},x_{0})^{-1}\,d\rho(x)\to\delta_{x_{0}}\) , where K n is the Christoffel–Darboux kernel. We prove that it holds for the Nevai class of a finite gap set uniformly on the spectrum, and we provide an example of a regular measure on [−2,2] where it fails on an interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Last, Y., Simon, B.: Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with a.c. spectra, preprint

  2. Boole, G.: On the comparison of transcendents, with certain applications to the theory of definite integrals. Philos. Trans. R. Soc. Lond. 147, 745–803 (1857)

    Article  Google Scholar 

  3. Breuer, J.: Spectral and dynamical properties of certain random Jacobi matrices with growing parameters. Trans. Am. Math. Soc. (to appear)

  4. Carmona, R.: One-dimensional Schrödinger operators with random or deterministic potentials: New spectral types. J. Funct. Anal. 51, 229–258 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  5. Christ, M., Kiselev, A., Last, Y.: Approximate eigenvectors and spectral theory. In: Differential Equations and Mathematical Physics. AMS/IP Stud. Adv. Math., vol. 16, pp. 85–96. American Mathematical Society, Providence (2000)

    Google Scholar 

  6. Christiansen, J.S., Simon, B., Zinchenko, M.: Finite gap Jacobi matrices, I. The isospectral torus. Constr. Approx. (to appear)

  7. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer, Berlin (1987); corrected and extended reprint (2008)

    MATH  Google Scholar 

  8. Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th birthday. Proc. Sympos. Pure Math., vol. 76.2, pp. 505–538. American Mathematical Society, Providence (2007)

    Google Scholar 

  9. Damanik, D., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, I. Absence of eigenvalues. Commun. Math. Phys. 207, 687–696 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Damanik, D., Naboko, S.: Unbounded Jacobi matrices at critical coupling. J. Approx. Theory 145, 221–236 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Damanik, D., Killip, R., Lenz, D.: Uniform spectral properties of one-dimensional quasicrystals, III. Alpha-continuity. Commun. Math. Phys. 212, 191–204 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Davis, B.: On the weak type (1,1) inequality for conjugate functions. Proc. Am. Math. Soc. 44, 307–311 (1974)

    MATH  Google Scholar 

  13. Denisov, S.A.: On a conjecture of Y. Last. J. Approx. Theory (to appear)

  14. Dombrowski, J.: Quasitriangular matrices. Proc. Am. Math. Soc. 69, 95–96 (1978)

    MATH  MathSciNet  Google Scholar 

  15. Freud, G.: Orthogonal Polynomials. Pergamon, Oxford (1971)

    Google Scholar 

  16. Jitomirskaya, S.: Singular spectral properties of a one-dimensional Schrödinger operator with almost periodic potential. In: Dynamical Systems and Statistical Mechanics, Moscow, 1991. Adv. Soviet Math., vol. 3, pp. 215–254. American Mathematical Society, Providence (1991)

    Google Scholar 

  17. Jitomirskaya, S., Last, Y.: Power-law subordinacy and singular spectra, I. Half-line operators. Acta Math. 183, 171–189 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaluzhny, U., Last, Y.: Preservation of a.c. spectrum for random decaying perturbations of square-summable high-order variation (in preparation)

  19. Kiselev, A., Last, Y., Simon, B.: Modified Prüfer and EFGP transforms and the spectral analysis of one-dimensional Schrödinger operators. Commun. Math. Phys. 194, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Last, Y.: Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation. Commun. Math. Phys. 274, 243–252 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Last, Y., Simon, B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators. Invent. Math. 135, 329–367 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Last, Y., Simon, B.: The essential spectrum of Schrödinger, Jacobi, and CMV operators. J. Anal. Math. 98, 183–220 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Loomis, L.H.: A note on the Hilbert transform. Bull. Am. Math. Soc. 52, 1082–1086 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lubinksy, D.S.: A new approach to universality limits involving orthogonal polynomials. Ann. Math. (to appear)

  25. Lubinsky, D.S.: Universality limits in the bulk for arbitrary measures on compact sets. J. Anal. Math. 106, 373–394 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lubinsky, D.S., Nevai, P.: Sub-exponential growth of solutions of difference equations. J. Lond. Math. Soc. (2) 46, 149–160 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Maslov, V.P., Molchanov, S.A., Gordon, A.Ya.: Behavior of generalized eigenfunctions at infinity and the Schrödinger conjecture. Russ. J. Math. Phys. 1, 71–104 (1993)

    MATH  MathSciNet  Google Scholar 

  28. Máté, A., Nevai, P., Totik, V.: What is beyond Szegő’s theory of orthogonal polynomials? In: Rational Approximation and Interpolation, Tampa, FL, 1983. Lecture Notes in Math., vol. 1105, pp. 502–510. Springer, Berlin (1984)

    Chapter  Google Scholar 

  29. Máté, A., Nevai, P., Totik, V.: Extensions of Szegő’s theory of orthogonal polynomials. II. Constr. Approx. 3, 51–72 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Máté, A., Nevai, P., Totik, V.: Extensions of Szegő’s theory of orthogonal polynomials. III. Constr. Approx. 3, 73–96 (1987)

    Article  MATH  Google Scholar 

  31. Máté, A., Nevai, P., Totik, V.: Szegő’s extremum problem on the unit circle. Ann. Math. 134, 433–453 (1991)

    Article  Google Scholar 

  32. Nevai, P.: Orthogonal polynomials. Mem. Am. Math. Soc. 18(213), 1–183 (1979)

    MathSciNet  Google Scholar 

  33. Nevai, P.: Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48, 3–167 (1986)

    Article  MATH  Google Scholar 

  34. Nevai, P., Totik, V., Zhang, J.: Orthogonal polynomials: their growth relative to their sums. J. Approx. Theory 67, 215–234 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rakhmanov, E.A.: Steklov’s conjecture in the theory of orthogonal polynomials. Math. USSR-Sb. 36, 549–575 (1980). Russian original in: Mat. Sb. (N.S.) 108(150), 581–608, 640 (1979)

    Article  Google Scholar 

  36. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, I. Functional Analysis. Academic Press, New York (1980)

    MATH  Google Scholar 

  37. Remling, C.: The absolutely continuous spectrum of Jacobi matrices, preprint

  38. Simon, B.: Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators. Proc. Am. Math. Soc. 124, 3361–3369 (1996)

    Article  Google Scholar 

  39. Simon, B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory. AMS Colloquium Series, vol. 54.2. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  40. Simon, B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1, 713–772 (2007)

    MATH  MathSciNet  Google Scholar 

  41. Simon, B.: Orthogonal polynomials with exponentially decaying recursion coefficients. In: Probability and Mathematical Physics. CRM Proc. Lecture Notes, vol. 42, pp. 453–463 (2007)

  42. Simon, B.: The Christoffel–Darboux kernel. In: Perspectives in PDE, Harmonic Analysis and Applications. Proc. Sympos. Pure Math., vol. 79, pp. 295–335. American Mathematical Society, Providence (2008)

    Google Scholar 

  43. Simon, B.: Two extensions of Lubinsky’s universality theorem. J. Anal. Math. 105, 345–362 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials (in preparation); to be published by Princeton University Press

  45. Stahl, H., Totik, V.: General orthogonal polynomials. In: Encyclopedia of Mathematics and Its Applications, vol. 43. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  46. Szegő, G.: Orthogonal Polynomials. Am. Math. Soc. Colloq. Publ., vol. 23. American Mathematical Society, Providence (1939); 3rd edn. (1967)

    Google Scholar 

  47. Szwarc, R.: A counterexample to subexponential growth of orthogonal polynomials. Constr. Approx. 11, 381–389 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  48. Szwarc, R.: Uniform subexponential growth of orthogonal polynomials. J. Approx. Theory 81, 296–302 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. Totik, V.: Asymptotics for Christoffel functions for general measures on the real line. J. Anal. Math. 81, 283–303 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  50. Totik, V.: Universality and fine zero spacing on general sets. Ark. Mat. (to appear)

  51. Zhang, J.: Relative growth of linear iterations and orthogonal polynomials on several intervals. Linear Algebra Appl. 186, 97–115 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zygmunt, M.J.: Some counterexamples to subexponential growth of orthogonal polynomials. Stud. Math. 116, 197–206 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Simon.

Additional information

Communicated by Doron S. Lubinsky.

Research of the second author was supported in part by The Israel Science Foundation (Grant No. 1169/06) and Grant No. 2006483 from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breuer, J., Last, Y. & Simon, B. The Nevai Condition. Constr Approx 32, 221–254 (2010). https://doi.org/10.1007/s00365-009-9055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-009-9055-1

Keywords

Mathematics Subject Classification (2000)

Navigation