Skip to main content
Log in

Analysis of glycylsarcosine transport by lobster intestine using gas chromatography

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Gas chromatography was used to measure transepithelial transport of glycylsarcosine (Gly-Sar) by perfused lobster (Homarus americanus) intestine. Unidirectional and net fluxes of dipeptide across the tissue and luminal factors affecting their magnitude and direction were characterized by perfusing the lumen with the dipeptide and measuring its appearance in saline on the serosal side of the organ. Transmural transport of 10 mM Gly-Sar resulted in serosal accumulation of only the dipeptide; no appearance of corresponding monomeric amino acids glycine or sarcosine was observed. Carrier-mediated and diffusional transmural intestinal transport of Gly-Sar was estimated at 1–15 mM luminal concentrations and followed a curvilinear equation providing a K m = 0.44 ± 0.17 mM, a J max = 1.27 ± 0.12 nmol cm−2 min−1, and a diffusional coefficient = 0.026 ± 0.008 nmol cm−2 min−1 mM−1. Unidirectional mucosal to serosal and serosal to mucosal fluxes of 10 mM Gly-Sar provided a significant (p < 0.05) net absorptive flux toward the serosa of 3.54 ± 0.77 nmol cm−2 min−1, further supporting carrier-mediated dipeptide transport across the gut. Alkaline (pH 8.5) luminal pH more than doubled transmural Gly-Sar transport as compared to acidic (pH 5.5) luminal pH, while luminal amino acid-metal chelates (e.g., Leu-Zn-Leu), and high concentrations of amino acids alone significantly (p < 0.001) reduced intestinal Gly-Sar transfer by inhibiting carrier transport of the dipeptide. Proposed mechanisms accounting for intestinal dipeptide transport and luminal factors affecting this process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Malak R, Ahearn GA (2014) Regulation of transmural transport of amino acid/metal conjugates by dietary calcium in crustacean digestive tract. J Exp Zool Part A 321A:135–143

    Article  Google Scholar 

  • Ahearn GA (1976) Co-transport of glycine and sodium across the mucosal border of the midgut epithelium in the marine shrimp, Penaeus marginatus. J Physiol 258:499–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahearn GA (1980) Intestinal electrophysiological and transmural ion transport in freshwater prawns. Am J Physiol 239:C1–C10

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Maginniss LA (1977) Kinetics of glucose transport by the perfused mid-gut of the freshwater prawn, Macrobrachium rosenbegii. J Physiol 271:319–336

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ahearn GA, Behnke RD, Zonno V, Storelli C (1992) Kinetic heterogeneity of Na/d-glucose cotransport in absorptive organs of the teleost gastrointestinal tract. Am J Physiol 263:R1018–R1023

    CAS  PubMed  Google Scholar 

  • Ahearn GA, Zhuang Z, Duerr J, Pennington V (1994) Role of the invertebrate electrogenic 2Na+/1H+ antiporter in monovalent and divalent cation transport. J Exp Biol 196:319–336

    CAS  PubMed  Google Scholar 

  • Aiken DE (1973) Proecdysis, setal development, and molt prediction in the American lobster (Homarus americanus). J Fish Res Board Can 30:1334–1337

    Article  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    Article  PubMed  Google Scholar 

  • Chu KH (1986) Glucose transport by the in vitro perfused midgut of the blue crab, Callinectes sapidus. J Exp Biol 123:325–344

    CAS  Google Scholar 

  • Conrad EM, Ahearn GA (2005) 3H-l-Histidine and 65Zn2+ are cotransported by a dipeptide transport system in intestine of lobster, Homarus americanus. J Exp Biol 208:287–296

    Article  CAS  PubMed  Google Scholar 

  • Conrad EM, Ahearn GA (2007) Transepithelial transport of zinc and l-histidine across perfused intestine of American lobster, Homarus americanus. J Comp Physiol 177:297–307

    Article  CAS  Google Scholar 

  • Daniel H (2004) Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Kottra G (2004) The proton oligopeptide contrasporter family SLC15 in physiology and pharmacology. Pflugers Arch 447(5):610–618

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Spanier B, Kottra G, Weitz D (2006) From bacteria to man: Arachaic proton-dependent peptide transporters at work. Physiology 21:93–102

    Article  CAS  PubMed  Google Scholar 

  • Dyer J, Beechey RB, Gorvel J-P, Smith RT, Wootoon R, Shirazi-Beechey SP (1990) Glycyl-l-proline transport in rabbit enterocyte basolateral membrane vesicles. Biochem J 269:565–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson R, Barker PL (1979) The decapod hepatopancreas. Oceanogr Mar Biol A Rev 17:285–346

    Google Scholar 

  • Glover CN, Wood CM (2008) Absorption of copper and copper-histidine complexes across the apical surface of freshwater rainbow trout intestine. J Comp Physiol B 178:101–109

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Ruiz D, Knipp GT (2003) Current perspectives on established and putative mammalian oligopeptide transporters. J Pharmaceu Sci 92:691–714

    Article  CAS  Google Scholar 

  • Kennedy DJ, Leibach FH, Ganapathy V, Thwaites DT (2002) Optimal absorptive transport of the dipeptide glycylsarcosine is dependent on functional Na+/H+ exchange activity. Pflugers Arch 445:139–146

    Article  CAS  PubMed  Google Scholar 

  • Matthews DM, Payne JW (1980) Transmembrane transport of small peptides. In: Bronner F, Kleinzeller A (eds) Current topics in membranes and transport, vol 14. Academic Press, Newyork, pp 332–425

    Google Scholar 

  • Obi I, Wells AL, Ortega P, Patel D, Farah L, Zanotto FP, Ahearn GA (2011) 3H-l-leucine transport by the promiscuous crustacean dipeptide-like co-transporter. J Exp Zool A 315(8):465–475

    Article  CAS  Google Scholar 

  • Rønnestad I, Gavaia PJ, Viegas CSB, Verri T, Romano A, Nilsen TO, Jordal A-EO, Kamisaka Y, Cancela ML (2007) Oligopeptide transporter PepT1 in Atlantic cod (Gadus morhua L.) cloning, tissue expression and comparative aspects. J Exp Biol 210:3883–3896

    Article  PubMed  Google Scholar 

  • Rubino A, Field M, Shwachman H (1971) Intestinal transport of amino acid residues of dipeptides: Influx of the glycine residue of glycyl-l-proline across mucosal border. J Biol Chem 246(11):3542–3548

    CAS  PubMed  Google Scholar 

  • Shepherd EJ, Lister N, Affleck JA, Bronk JR, Kellet GL, Collier ID, Bailey PD, Boyd CAR (2002) Identification of a candidate membrane protein for the basolateral peptide transporter of rat small intestine. Biochem Bioph Res Co 296:918–922

    Article  CAS  Google Scholar 

  • Thamotharan M, Ahearn GA (1996) Dipeptide transport by crustacean hepatopancreatic brush-border membrane vesicles. J Exp Biol 199:635–641

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Gomme J, Zonno V, Maffia M, Storelli C, Ahearn GA (1996a) Electrogenic, proton-coupled, intestinal dipeptide transport in herbivorous and carnivorous teleosts. Am J Physiol 270:R939–R947

    CAS  PubMed  Google Scholar 

  • Thamotharan M, Zonno V, Storelli C, Ahearn GA (1996b) Basolateral dipeptide transport by the intestine of the teleost Oreochromis mossambicus. Am J Physiol 270:R948–R954

    CAS  PubMed  Google Scholar 

  • Thwaites DT, Kennedy DJ, Raldua D, Anderson CM, Mendoza ME, Bladen CL, Simmons NL (2002) H+/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na+/H+ exchanger. Gastroenterology 122:1322–1333

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Moran A (1982a) Heterogeneity of sodium-dependent d-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol 242:F406–F414

    CAS  PubMed  Google Scholar 

  • Turner RJ, Moran A (1982b) Further studies of proximal tubular brush border membrane d-glucose transport heterogeneity. J Membrane Biol 70:37–45

    Article  CAS  Google Scholar 

  • Verri T, Maffia M, Danieli A, Herget M, Wenzel U, Daniel H, Storelli C (2000) Characterization of the H+/peptide cotransporter of eel intestinal brush-border membranes. J Exp Biol 203:2991–3001

    CAS  PubMed  Google Scholar 

  • Verri T, Kottra G, Romano A, Tiso N, Peric M, Maffia M, Boll M, Argenton F, Daniel H, Storelli C (2003) Molecular and functional characterization of the zebrafish (Danio rerio) PEPT1-type peptide transporter. FEBS Lett 549:115–122

    Article  CAS  PubMed  Google Scholar 

  • Verri T, Romano A, Barca A, Kottr G, Daniel H, Storelli C (2010) Transport of di- and tripeptides in teleost fish intestine. Aquac Res 41:641–653

    Article  CAS  Google Scholar 

  • Wright SH, Ahearn GA (1997) Nutrient absorption in invertebrates. In: Handbook of physiology (Sect 13: Comparative Physiology), vol. II, Chap. 16, pp 1137–120. Oxford University Press, Oxford

  • Wyban JA, Ahearn GA, Maginniss LA (1980) Effects of organic solutes on transmural PD and Na transport in freshwater prawn intestine. Am J Physiol 239:C11–C17

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2010-65206-20617 from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory A. Ahearn.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peterson, M.L., Lane, A.L. & Ahearn, G.A. Analysis of glycylsarcosine transport by lobster intestine using gas chromatography. J Comp Physiol B 185, 37–45 (2015). https://doi.org/10.1007/s00360-014-0863-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-014-0863-7

Keywords

Navigation