Skip to main content
Log in

Brain thermal inertia, but no evidence for selective brain cooling, in free-ranging western grey kangaroos (Macropus fuliginosus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Marsupials reportedly can implement selective brain cooling despite lacking a carotid rete. We measured brain (hypothalamic) and carotid arterial blood temperatures every 5 min for 5, 17, and 63 days in spring in three free-living western grey kangaroos. Body temperature was highest during the night, and decreased rapidly early in the morning, reaching a nadir at 10:00. The highest body temperatures recorded occurred sporadically in the afternoon, presumably associated with exercise. Hypothalamic temperature consistently exceeded arterial blood temperature, by an average 0.3°C, except during these afternoon events when hypothalamic temperature lagged behind, and was occasionally lower than, the simultaneous arterial blood temperature. The reversal in temperatures resulted from the thermal inertia of the brain; changes in the brain to arterial blood temperature difference were related to the rate of change of arterial blood temperature on both heating and cooling (P < 0.001 for all three kangaroos). We conclude that these data are not evidence for active selective brain cooling in kangaroos. The effect of thermal inertia on brain temperature is larger than might be expected in the grey kangaroo, a discrepancy that we speculate derives from the unique vascular anatomy of the marsupial brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker MA (1982) Brain cooling in endotherms in heat and exercise. Annu Rev Physiol 44:85–96

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Hayward JN (1967) Carotid rete and brain temperature of cat. Nature 216:139–141

    Article  PubMed  CAS  Google Scholar 

  • Baker MA, Hayward JN (1968) The influence of the nasal mucosa and the carotid rete upon hypothalamic temperature in sheep. J Physiol (Lond) 198:561–579

    CAS  Google Scholar 

  • Baudinette RV (1984) Thermoregulation in marsupials during exercise. In: Hales JRS (ed) Thermal physiology. Raven Press, New York, pp 423–428

    Google Scholar 

  • Brown GD, Dawson TJ (1977) Seasonal variations in the body temperatures of unrestrained kangaroos (Macropodidae: Marsupialia). Comp Biochem Physiol A 56:59–67

    Article  PubMed  CAS  Google Scholar 

  • Caputa M, Kadziela W, Narebski J (1976) Significance of cranial circulation for the brain homeothermia in rabbits. I. The brain-arterial blood temperature gradient. Acta Neurobiol Exp (Warsz) 36:613–623

    CAS  Google Scholar 

  • Caputa M, Kadziela W, Narebski J (1983) Cerebral temperature regulation in resting and running guinea-pigs (Cavia porcellus). J Therm Biol 8:265–272

    Article  Google Scholar 

  • Caputa M, Demicka A, Dokladny K, Kurowicka B (1996) Anatomical and physiological evidence for efficacious selective brain cooling in rats. J Therm Biol 21:21–28

    Article  Google Scholar 

  • Caughley G (1964) Social organisation and daily activity of the red kangaroo and the grey kangaroo. J Mammal 45:429–436

    Article  Google Scholar 

  • Caughley G, Grigg GC, Smith L (1985) The effect of drought on kangaroo populations. J Wildl Manage 49:679–685

    Article  Google Scholar 

  • Chesy G, Caputa M, Kadziela W, Kozak W, Lachowski A (1983) The influence of ambient temperature on brain homeothermia in the ox (Bos taurus). J Therm Biol 8:259–263

    Article  Google Scholar 

  • Craigie EH (1938) The blood vessels in the central nervous system of the kangaroo. Science 88:359–360

    Article  PubMed  Google Scholar 

  • Dawson TJ (1973) Thermoregulatory responses of the arid zone kangaroos, Megalia rufa and Macropus robustus. Comp Biochem Physiol A 46:153–169

    Article  PubMed  CAS  Google Scholar 

  • Dawson TJ (1995) Kangaroos: biology of the largest marsupials. UNSW Press, Sydney

    Google Scholar 

  • Dawson TJ, May EL (1984) Daily variation in brain and body temperatures of the sugar glider (Petaurus breviceps): some insights into the control of thermoregulation. In: Smith AP, Hume ID (eds) Possums and gliders. Australian Mammal Society, Sydney, pp 375–383

    Google Scholar 

  • Dawson TJ, Blaney CE, Munn AJ, Krockenberger A, Maloney SK (2000) Thermoregulation by kangaroos from mesic and arid habitats: Influence of temperature on routes of heat loss in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus). Physiol Biochem Zool 73:374–381

    Article  PubMed  CAS  Google Scholar 

  • Doolette DJ, Upton RN, Grant C (1999) Agreement between ultrasonic Doppler venous outflow and Kety and Schmidt estimates of cerebral blood flow. Clin Exp Pharmacol Physiol 26:736–740

    Article  PubMed  CAS  Google Scholar 

  • du Boulay GH, Verity PM (1973) The cranial arteries of mammals. Whitefriars Press Ltd, London

    Google Scholar 

  • Fuller A, Mitchell G, Mitchell D (1999a) Non-thermal signals govern selective brain cooling in pigs. J Comp Physiol B 169:605–611

    Article  PubMed  CAS  Google Scholar 

  • Fuller A, Moss DG, Skinner JD, Jessen PT, Mitchell G, Mitchell D (1999b) Brain, abdominal and arterial blood temperatures of free-ranging eland in their natural habitat. Pflugers Arch 438:671–680

    Article  PubMed  CAS  Google Scholar 

  • Fuller A, Maloney SK, Kamerman PR, Mitchell G, Mitchell D (2000) Absence of selective brain cooling in free-ranging zebras in their natural habitat. Exp Physiol 85:209–217

    Article  PubMed  CAS  Google Scholar 

  • Fuller CA, Baker MA (1983) Selective regulation of brain and body temperatures in the squirrel monkey. Am J Physiol 245:R293–R297

    PubMed  CAS  Google Scholar 

  • Gordon CJ, Rezvani AH, Fruin ME, Trautwein S, Heath JE (1981) Rapid brain cooling in the free-running hamster Mesocricetus auratus. J Appl Physiol 51:1349–1354

    PubMed  CAS  Google Scholar 

  • Hayward JN, Baker MA (1968) Role of cerebral arterial blood in the regulation of brain temperature in the monkey. Am J Physiol 215:389–403

    PubMed  CAS  Google Scholar 

  • IUPS Thermal Commission (2001) Glossary of terms for thermal physiology: third edition. Jpn J Physiol 51:245–280

    Google Scholar 

  • Jessen C (1998) Brain cooling: an economy mode of temperature regulation in artiodactyls. News Physiol Sci 13:281–286

    PubMed  Google Scholar 

  • Jessen C (2001) Selective brain cooling in mammals and birds. Jpn J Physiol 51:291–301

    Article  PubMed  CAS  Google Scholar 

  • Jessen C, Laburn HP, Knight MH, Kuhnen G, Goelst K, Mitchell D (1994) Blood and brain temperatures of free-ranging black wildebeest in their natural environment. Am J Physiol Regul Integr Comp Physiol 36:R1528–R1536

    Google Scholar 

  • Johnsen HK, Blix AS, Mercer JB, Bolz KD (1987) Selective cooling of the brain in reindeer. Am J Physiol 253:R848–R853

    PubMed  CAS  Google Scholar 

  • Kilgore DL, Boggs DF, Birchard GF (1979) Role of the rete mirabile ophthalmicum in maintaining the body to brain difference in pigeons. J Comp Physiol 129:119–122

    Google Scholar 

  • Kluger MJ, D’Alecy LG (1975) Brain temperature during reversible upper respiratory bypass. J Appl Physiol 38:268–271

    PubMed  CAS  Google Scholar 

  • Kuhnen G, Jessen C (1991) Threshold and slope of selective brain cooling. Pflugers Arch 418:176–183

    Article  PubMed  CAS  Google Scholar 

  • Lust A, Fuller A, Maloney SK, Mitchell D, Mitchell G (2007) Thermoregulation in pronghorn antelope (Antilocapra americana Ord) in the summer. J Exp Biol 210:2444–2452

    Article  PubMed  CAS  Google Scholar 

  • Maloney SK, Fuller A, Mitchell G, Mitchell D (2001) Rectal temperature measurement results in artifactual evidence of selective brain cooling. Am J Physiol Regul Integr Comp Physiol 281:R108–R114

    PubMed  CAS  Google Scholar 

  • Maloney SK, Fuller A, Mitchell G, Mitchell D (2002) Brain and arterial blood temperatures of free-ranging oryx (Oryx gazella). Pflugers Arch 443:437–445

    Article  PubMed  CAS  Google Scholar 

  • Maloney SK, Fuller A, Kamerman P, Mitchell G, Mitchell D (2004) Variation in body temperature in free-ranging western grey kangaroos (Macropus fuliginosus). Aust Mammal 26:135–144

    Google Scholar 

  • Maloney SK, Mitchell D, Blache D (2007a) The contribution of carotid rete variability to brain temperature variability in sheep in a thermoneutral environment. Am J Physiol Regul Integr Comp Physiol 292:R1298–R1305

    PubMed  CAS  Google Scholar 

  • Maloney SK, Mitchell D, Mitchell G, Fuller A (2007b) Absence of selective brain cooling in unrestrained baboons exposed to heat. Am J Physiol Regul Integr Comp Physiol 292:R2059–R2067

    PubMed  CAS  Google Scholar 

  • McCarron HCK, Buffenstein R, Fanning FD, Dawson TJ (2001) Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of South East Australia. J Comp Physiol B 171:401–411

    Article  PubMed  CAS  Google Scholar 

  • McConaghy FF, Hales JRS, Rose RJ, Hodgson DR (1995) Selective brain cooling in the horse during exercise and environmental heat stress. J Appl Physiol 79:1849–1854

    PubMed  CAS  Google Scholar 

  • Mitchell G, Lust A (2008) The carotid rete and artiodactyl success. Biol Lett 4:415–418

    Article  PubMed  CAS  Google Scholar 

  • Mitchell D, Maloney SK, Laburn HP, Knight MH, Kuhnen G, Jessen C (1997) Activity, blood temperature and brain temperature of free-ranging springbok. J Comp Physiol B 167:335–343

    Article  PubMed  CAS  Google Scholar 

  • Mitchell D, Maloney SK, Jessen C, Laburn HP, Kamerman PR, Mitchell G, Fuller A (2002) Adaptive heterothermy and selective brain cooling in arid-zone mammals. Comp Biochem Physiol B 131:571–585

    Article  PubMed  Google Scholar 

  • Mitchell G, Fuller A, Maloney SK, Rump N, Mitchell D (2006) Guttural pouches, brain temperature, and exercise in horses. Biol Lett 2:475–477

    Article  PubMed  Google Scholar 

  • Nicol SC, Shah SKH (1989) Brain heat exchangers in marsupials. In: Mercer J (ed) Thermal physiology. Excerpta Medica, Amsterdam, pp 649–652

    Google Scholar 

  • Nunneley SA, Nelson DA (1994) Limitations on arteriovenous cooling of the blood supply to the human brain. Eur J Appl Physiol Occup Physiol 69:474–479

    Article  PubMed  CAS  Google Scholar 

  • Nybo L, Secher NH, Nielsen B (2002) Inadequate heat release from the human brain during prolonged exercise with hyperthermia. J Physiol (Lond) 545:697–704

    Article  CAS  Google Scholar 

  • Schumann P, Touzani O, Young AR, Verard L, Morello R, MacKenzie ET (1996) Effects of indomethacin on cerebral blood flow and oxygen metabolism: a positron emission tomographic investigation in the anaesthetized baboon. Neurosci Lett 220:137–141

    Article  PubMed  Google Scholar 

  • Shah SKH, Nicol SC, Swain R (1986) Functional morphology of the cranial vasculature and the nasal passage in the Tasmanian Devil, Sarcophilus harrisii (Marsupialia, Dasyuridae)—a marsupial carotid rete? Aust J Zool 34:125–133

    Article  Google Scholar 

  • Sunderland S (1941) The vascular pattern in the central nervous system of the monotremes and Australian marsupials. J Comp Neurol 75:123–129

    Article  Google Scholar 

  • Swindle PF (1937) Occlusion of blood vessels by agglutinated red cells, mainly as seen in tadpoles and very young kangaroos. Am J Physiol 120:59–74

    Google Scholar 

  • Taylor CR (1970) Dehydration and heat: effects on temperature regulation of East African ungulates. Am J Physiol 219:1136–1139

    PubMed  CAS  Google Scholar 

  • Waring H, Moir RJ, Tyndale-Biscoe CH (1966) Comparative physiology of marsupials. Adv Comp Physiol Biochem 2:237–376

    PubMed  CAS  Google Scholar 

  • Withers PC, Thompson GG, Seymour RS (2000) Metabolic physiology of the north-western marsupial mole Notoryctes caurinus (Marsupialia: Notoryctidae). Aust J Zool 48:241–258

    Article  Google Scholar 

  • Yablonskiy DA, Ackerman JJ, Raichle ME (2000) Coupling between changes in human brain temperature and oxidative metabolism during prolonged visual stimulation. Proc Natl Acad Sci USA 97:7603–7608

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Ackerman JJH, Sukstanskii A, Yablonskiy DA (2006) How the body controls brain temperature: the temperature shielding effect of cerebral blood flow. J Appl Physiol 101:1481–1488

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by an Australian Research Council Discovery grant to S·K.M. and D.M., by the office of the Vice-Chancellor (Research) at UWA, and by the South African National Research Foundation. We thank the Harry Waring Reserve management committee for providing permission to use the reserve and Mr. Bob Cooper, the warden of the Reserve, for his generous help with logistics and animal monitoring. The Department of Conservation and Land Management, Western Australia, approved the use of native fauna in this project. Professor Graeme Martin and the School of Animal Biology, UWA, allowed us to use their 4WD vehicle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane K. Maloney.

Additional information

Communicated by I. D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maloney, S.K., Fuller, A., Meyer, L.C.R. et al. Brain thermal inertia, but no evidence for selective brain cooling, in free-ranging western grey kangaroos (Macropus fuliginosus). J Comp Physiol B 179, 241–251 (2009). https://doi.org/10.1007/s00360-008-0308-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0308-2

Keywords

Navigation