Skip to main content
Log in

Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Desert locusts (Schistocerca gregaria) sense the plane of dorsally presented polarized light through specialized dorsal eye regions that are likely adapted to exploit the polarization pattern of the blue sky for spatial orientation. Receptive fields of these dorsal rim photoreceptors and polarization-sensitive interneurons are directed toward the upper sky but may extend to elevations below 30°. Behavioral data, however, suggests that S. gregaria is even able to detect polarized light from ventral directions but physiological evidence for this is still lacking. In this study we characterized neurons in the locust brain showing polarization sensitivity at low elevations down to the horizon. In most neurons polarization sensitivity was absent or weak when stimulating from the zenith. All neurons, including projection and commissural neurons of the optic lobe and local interneurons of the central brain, are novel cell types, distinct from polarization-sensitive neurons studied so far. Painting dorsal rim areas in both eyes black to block visual input had no effect on the polarization sensitivity of these neurons, suggesting that they receive polarized light input from the main eye. A possible role of these neurons in flight stabilization or the perception of polarized light reflected from bodies of water or vegetation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Φ:

E-vector angle

AMMC:

Antennal mechanosensory and motor center

DRA:

Dorsal rim area

E-vector:

Electric field vector

IL neurons:

Interlobula neurons

IM neurons:

Intermedulla neurons

LP neurons:

Lobula projection neurons

MEHF neurons:

Medulla equatorial horizontal fascicle neurons

MLP neurons:

Medulla-lobula projection neurons

NaPi:

Sodium phosphate buffer

NGS:

Normal goat serum

PBS:

Phosphate-buffered saline

PBT:

Phosphate-buffered saline with Triton X-100

POL:

Polarization

PS:

POL sensitivity

References

  • Batschelet E (1981) Circular statistics in biology. Academic Press, New York

    Google Scholar 

  • Bech M, Homberg U, Pfeiffer K (2014) Receptive fields of locust brain neurons are matched to polarization patterns of the sky. Curr Biol 24:2124–2129

    Article  CAS  PubMed  Google Scholar 

  • Beetz MJ, el Jundi B, Heinze S, Homberg U (2015) Topographic organization and possible function of the posterior optic tubercles in the brain of the desert locust Schistocerca gregaria. J Comp Neurol 523:1589–1607

    Article  CAS  PubMed  Google Scholar 

  • Beetz MJ, Hechavarría JC, Kössl M (2016) Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences. Sci Rep 6:29102. doi:10.1038/srep29102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bockhorst T, Homberg U (2015) Amplitude and dynamics of polarization-plane signaling in the central complex of the locust brain. J Neurophysiol 113:3291–3311

    Article  PubMed  PubMed Central  Google Scholar 

  • Boda P, Horváth G, Kriska G, Blahó M, Csabai Z (2014) Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101:385–395

    Article  CAS  PubMed  Google Scholar 

  • Camhi JM (1971) Flight orientation in locusts. Sci Am 225(2):74–81

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Li XR, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437–446

    Article  CAS  PubMed  Google Scholar 

  • el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS ONE 6:e27855

    Article  PubMed  PubMed Central  Google Scholar 

  • Elphick MR, Williams L, O’Shea M (1996) New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J Exp Biol 199:2395–2407

    CAS  PubMed  Google Scholar 

  • Enserink M (2004) Entomology. Can the war on locusts be won? Science 306:1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Gewecke M, Hou T (1992) Structure and function of visual interneurons in the locust brain. In: Singh RN (ed) Nervous systems, principles of design and function. Wiley, New Delhi, pp 255–270

    Google Scholar 

  • Gewecke M, Hou T (1993) Visual brain neurons in Locusta migratoria. In: Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 119–144

    Google Scholar 

  • Griss C, Rowell CHF (1986) Three descending interneurons reporting deviation from course in the locust. 1. Anatomy. J Comp Physiol A 158:765–774

    Article  CAS  PubMed  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    Article  CAS  PubMed  Google Scholar 

  • Heinze S, Gotthardt S, Homberg U (2009) Transformation of polarized light information in the central complex of the locust. J Neurosci 29:11783–11793

    Article  CAS  PubMed  Google Scholar 

  • Helfrich-Förster C, Stengl M, Homberg U (1998) Organization of the circadian system in insects. Chronobiol Int 15:567–594

    Article  PubMed  Google Scholar 

  • Hensler K (1989) Corrective flight steering in locusts: convergence of extero- and proprioceptive inputs in descending deviation detectors. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum Press, London, pp 531–554

    Chapter  Google Scholar 

  • Henze MJ, Dannenhauer K, Kohler M, Labhart T, Gesemann M (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163. doi:10.1186/1471-2148-12-163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208

    Article  CAS  PubMed  Google Scholar 

  • Homberg U (2015) Sky compass orientation in desert locusts—evidence from field and laboratory studies. Front Behav Neurosci 9:346

    Article  PubMed  PubMed Central  Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    Article  PubMed  Google Scholar 

  • Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    Article  PubMed  Google Scholar 

  • Horváth G (1995) Reflection polarization patterns at flat water surfaces and their relevance for insect polarization vision. J Theor Biol 175:27–37

    Article  PubMed  Google Scholar 

  • Horváth G, Majer J, Horváth L, Szivak I, Kriska G (2008) Ventral polarization vision in tabanids: horseflies and deerflies (Diptera: tabanidae) are attracted to horizontally polarized light. Naturwissenschaften 95:1093–1100

    Article  PubMed  Google Scholar 

  • Hu XB, England JH, Lani AC, Tung JJ, Ward NJ, Adams SM, Barber KA, Whaley MA, O’Tousa JE (2009) Patterned rhodopsin expression in R7 photoreceptors of mosquito retina: implications for species-specific behavior. J Comp Neurol 516:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelber A (1999) Why’ false’ colours are seen by butterflies. Nature 402:251

    Article  CAS  PubMed  Google Scholar 

  • Kelber A, Thunell C, Arikawa K (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    CAS  PubMed  Google Scholar 

  • Kelly KM, Mote MI (1990a) Avoidance of monochromatic light by the cockroach Periplaneta americana. J Insect Physiol 36:287–291

    Article  Google Scholar 

  • Kelly KM, Mote MI (1990b) Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroach, Periplaneta americana. J Comp Physiol A 167:745–756

    Article  CAS  PubMed  Google Scholar 

  • Kennedy JS (1945) Observations on the mass migration of desert locust hoppers. Trans Roy Ent Soc London 95:247–262

    Article  Google Scholar 

  • Kennedy JS (1951) The migration of the desert locust (Schistocerca gregaria Forsk.). I. The behaviour of swarms. II. A theory of long-range migrations. Philos Trans R Soc Lond B Biol Sci 235:163–290

    Article  CAS  PubMed  Google Scholar 

  • Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an optoelectronic model neurone. J Exp Biol 202:757–770

    PubMed  Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    Article  CAS  PubMed  Google Scholar 

  • Latchininsky AV (2010) Locusts. In: Breed AD, Moore J (eds) Encyclopedia of animal behavior, vol 2. Academic Press, Oxford, pp 288–295

    Chapter  Google Scholar 

  • Laughlin SB (1976) Sensitivities of dragonfly photoreceptors and voltage gain of transduction. J Comp Physiol 111:221–247

    Article  Google Scholar 

  • Laughlin S, McGinness S (1978) Structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res 188:427–447

    Article  CAS  PubMed  Google Scholar 

  • Leggett LMW (1976) Polarized light-sensitive interneurones in a swimming crab. Nature 262:709–711

    Article  CAS  PubMed  Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702

    Article  CAS  PubMed  Google Scholar 

  • Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68

    Article  CAS  Google Scholar 

  • Nelson SB (1991) Temporal interactions in the cat visual system. 1. Orientation-selective suppression in the visual cortex. J Neurosci 11:344–356

    CAS  PubMed  Google Scholar 

  • Osorio D (1986a) Directionally selective cells in the locust medulla. J Comp Physiol A 159:841–847

    Article  CAS  PubMed  Google Scholar 

  • Osorio D (1986b) Ultraviolet sensitivity and spectral opponency in the locust. J Exp Biol 122:193–208

    Google Scholar 

  • Pfeiffer K, Kinoshita M, Homberg U (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophysiol 94:3903–3915

    Article  PubMed  Google Scholar 

  • Reichert H (1993) Sensory inputs and flight orientation in locusts. Comp Biochem Physiol A 104:647–657

    Article  Google Scholar 

  • Reischig T, Stengl M (2003) Ectopic transplantation of the accessory medulla restores circadian locomotor rhythms in arrhythmic cockroaches (Leucophaea maderae). J Exp Biol 206:1877–1886

    Article  PubMed  Google Scholar 

  • Rind FC (1987) Non-directional, movement sensitive neurones of the locust optic lobe. J Comp Physiol A 161:477–494

    Article  Google Scholar 

  • Rind FC (1990) A directionally selective motion-detecting neurone in the brain of the locust: physiological and morphological characterization. J Exp Biol 149:1–19

    Google Scholar 

  • Rossel S, Wehner R, Lindauer M (1978) E-vector orientation in bees. J Comp Physiol 125:1–12

    Article  Google Scholar 

  • Rowell CHF (1988) Mechanisms of flight steering in locusts. Experientia 44:389–395

    Article  Google Scholar 

  • Schmeling F, Wakakuwa M, Tegtmeier J, Kinoshita M, Bockhorst T, Arikawa K, Homberg U (2014) Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria. J Exp Biol 217:3557–3568

    Article  PubMed  Google Scholar 

  • Schmeling F, Tegtmeier J, Kinoshita M, Homberg U (2015) Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. J Comp Physiol A 201:427–440

    Article  Google Scholar 

  • Schneider L, Langer H (1969) Die Struktur des Rhabdoms im “Doppelauge” des Wasserläufers Gerris lacustris. Z Zellforsch 99:538–559

    Article  CAS  PubMed  Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Article  Google Scholar 

  • Schwind R, Horváth G (1993) Reflection-polarization pattern at water surfaces and correction of a common representation of the polarization pattern of the sky. Naturwissenschaften 80:82–83

    Article  Google Scholar 

  • Sharp PE, Blair HT, Cho JW (2001) The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci 24:289–294

    Article  CAS  PubMed  Google Scholar 

  • Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol Lett 1:472–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern M, Gewecke M (1993) Spatial sensitivity profiles of motion sensitive neurons in the locust brain. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 184–195

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin

    Book  Google Scholar 

  • Strutt JW (1871) On the light from the sky, its polarization and colour. Philos Mag 41:107–120

    Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    Article  CAS  PubMed  Google Scholar 

  • Träger U, Homberg U (2011) Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J Neurosci 31:2238–2247

    Article  PubMed  Google Scholar 

  • Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    CAS  PubMed  Google Scholar 

  • Wehner R (2001) Polarization vision - a uniform sensory capacity? J Exp Biol 204:2589–2596

    CAS  PubMed  Google Scholar 

  • Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445

    Article  CAS  PubMed  Google Scholar 

  • Wernet MF, Velez MM, Clark DA, Baumann-Klausener F, Brown JR, Klovstad M, Labhart T, Clandinin TR (2012) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20

    Article  CAS  PubMed  Google Scholar 

  • Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural field test. Naturwissenschaften 85:297–302

    Article  CAS  Google Scholar 

  • Zar J (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Erich Buchner (University of Würzburg) and Hans Agricola (University of Jena) for the donation of antisera, and to Martina Kern for maintaining the locust cultures. This work was supported by grants from Deutsche Forschungsgemeinschaft (HO 950/16-3 and HO 950/23-1) to UH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Homberg.

Ethics declarations

Author contributions

MJB performed experiments. KP wrote scripts for recordings and analysis. MJB and KP analysed data. MJB wrote manuscript. MJB and UH conceived and directed the study. All authors discussed the results and commented on the manuscript.

Author information

The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to U.H. (homberg@biologie.uni-marburg.de).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerome Beetz, M., Pfeiffer, K. & Homberg, U. Neurons in the brain of the desert locust Schistocerca gregaria sensitive to polarized light at low stimulus elevations. J Comp Physiol A 202, 759–781 (2016). https://doi.org/10.1007/s00359-016-1116-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-016-1116-x

Keywords

Navigation