Skip to main content
Log in

cGMP modulates responses to queen mandibular pheromone in worker honey bees

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Responses to social cues, such as pheromones, can be modified by genotype, physiology, or environmental context. Honey bee queens produce a pheromone (queen mandibular pheromone; QMP) which regulates aspects of worker bee behavior and physiology. Forager bees are less responsive to QMP than young bees engaged in brood care, suggesting that physiological changes associated with behavioral maturation modulate response to this pheromone. Since 3′,5′-cyclic guanosine monophosphate (cGMP) is a major regulator of behavioral maturation in workers, we examined its role in modulating worker responses to QMP. Treatment with a cGMP analog resulted in significant reductions in both behavioral and physiological responses to QMP in young caged workers. Treatment significantly reduced attraction to QMP and inhibited the QMP-mediated increase in vitellogenin RNA levels in the fat bodies of worker bees. Genome-wide analysis of brain gene expression patterns demonstrated that cGMP has a larger effect on expression levels than QMP, and that QMP has specific effects in the presence of cGMP, suggesting that some responses to QMP may be dependent on an individual bees’ physiological state. Our data suggest that cGMP-mediated processes play a role in modulating responses to QMP in honey bees at the behavioral, physiological, and molecular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Amfor :

foraging gene

8-Br-cGMP:

8-Bromo-cGMP, an analog of cGMP

cGMP:

3′,5′-Cyclic guanosine monophosphate

MDI:

Multi-drone inseminated

9-ODA:

(E)-9-oxodec-2-enoic acid

PKG:

cGMP-dependent protein kinase

QMP:

Queen mandibular pheromone

qRT-PCR:

Quantitative real time PCR

SDI:

Single drone inseminated

Vg :

vitellogenin gene

References

  • Amdam GV, Simoes ZL, Hagen A, Norberg K, Schroder K, Mikkelsen O, Kirkwood TB, Omholt SW (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39(5):767–773. doi:10.1016/j.exger.2004.02.010

    Article  PubMed  CAS  Google Scholar 

  • Barron A, Schulz D, Robinson GE (2002) Octopamine modulates responsiveness to foraging-related stimuli in honey bees (Apis mellifera). J Comp Phys A 188(8):603–610

    Article  CAS  Google Scholar 

  • Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR (2007) Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci USA 104(7):2460–2464. doi:10.1073/pnas.0608224104

    Article  PubMed  CAS  Google Scholar 

  • Belay AT, Scheiner R, So AK, Douglas SJ, Chakaborty-Chatterjee M, Levine JD, Sokolowski MB (2007) The foraging gene of Drosophila melanogaster: spatial-expression analysis and sucrose responsiveness. J Comp Neurol 504(5):570–582. doi:10.1002/cne.21466

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE (2002) Influence of gene action across different time scales on behavior. Science 296(5568):741–744. doi:10.1126/science.1069911296/5568/741

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shahar Y, Leung HT, Pak WL, Sokolowski MB, Robinson GE (2003) cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J Exp Biol 206(Pt 14):2507–2515

    Article  PubMed  CAS  Google Scholar 

  • Bloch G, Toma DP, Robinson GE (2001) Behavioral rhythmicity, age, division of labor and period gene expression in the honey bee brain. J Biol Rhythms 16(5):444–456

    Article  PubMed  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  • Fischer P, Grozinger CM (2008) Pheromonal regulation of starvation resistance in honey bee workers (Apis mellifera). Naturwissenschaften 95(8):723–729. doi:10.1007/s00114-008-0378-8

    Article  PubMed  CAS  Google Scholar 

  • Fluri P, Lüscher M, Wille H, Gerig L (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol 28(1):61–68

    Article  CAS  Google Scholar 

  • Fujiwara M, Sengupta P, McIntire SL (2002) Regulation of body size and behavioral state of C elegans by sensory perception and the EGL-4 cGMP-dependent protein kinase. Neuron 36(6):1091–1102. doi:S0896627302010930

    Article  PubMed  CAS  Google Scholar 

  • Fussnecker B, Grozinger C (2008) Dissecting the role of Kr-h1 brain gene expression in foraging behavior in honey bees (Apis mellifera). Insect Mol Biol 17(5):515–522. doi:10.1111/j.1365-2583.2008.00819.x

    Article  PubMed  CAS  Google Scholar 

  • Gadenne C, Anton S (2000) Central processing of sex pheromone stimuli is differentially regulated by juvenile hormone in a male moth. J Insect Physiol 46(8):1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Gadenne C, Renou M, Sreng L (1993) Hormonal control of pheromone responsiveness in the male black cutworm, Agrotis ipsilon. Cell Mol Life Sci 49(8):721–724

    Article  CAS  Google Scholar 

  • Grozinger C, Robinson G (2007) Endocrine modulation of a pheromone-responsive gene in the honey bee brain. J Comp Physiol A 193(4):461–470

    Article  CAS  Google Scholar 

  • Grozinger CM, Sharabash NM, Whitfield CW, Robinson GE (2003) Pheromone-mediated gene expression in the honey bee brain. Proc Natl Acad Sci USA 100(Suppl 2):14519–14525. doi:10.1073/pnas.2335884100

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM, Fischer P, Hampton JE (2007) Uncoupling primer and releaser responses to pheromone in honey bees. Naturwissenschaften 94(5):375–379. doi:10.1007/s00114-006-0197-8

    Article  PubMed  CAS  Google Scholar 

  • Higo HA, Colley SJ, Winston ML, Slessor KN (1992) Effects of honey bee (Apis mellifera L.) queen mandibular gland pheromone on foraging and brood rearing. Can Entomol 124(2):409–418

    Article  Google Scholar 

  • Hou Y, Ye RD, Browning DD (2004) Activation of the small GTPase Rac1 by cGMP-dependent protein kinase. Cell Signal 16(9):1061–1069. doi:10.1016/j.cellsig.2004.03.002

    PubMed  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Ingram KK, Oefner P, Gordon DM (2005) Task-specific expression of the foraging gene in harvester ants. Mol Ecol 14(3):813–818. doi:10.1111/j.1365-294X.2005.02450.x

    Article  PubMed  CAS  Google Scholar 

  • Jaycox ER (1970) Honey bee foraging behavior: responses to queens, larvae, and extracts of larvae. Ann Entomol Soc Am 63:1689–1694

    Google Scholar 

  • Johnson BR (2010) Division of labor in honeybees: form, function, and proximate mechanisms. Behav Ecol Sociobiol 64(3):305–316. doi:10.1007/s00265-009-0874-7

    Article  PubMed  Google Scholar 

  • Kaun KR, Hendel T, Gerber B, Sokolowski MB (2007a) Natural variation in Drosophila larval reward learning and memory due to a cGMP-dependent protein kinase. Learn Mem 14(5):342–349. doi:10.1101/lm.505807

    Article  PubMed  Google Scholar 

  • Kaun KR, Riedl CA, Chakaborty-Chatterjee M, Belay AT, Douglas SJ, Gibbs AG, Sokolowski MB (2007b) Natural variation in food acquisition mediated via a Drosophila cGMP-dependent protein kinase. J Exp Biol 210(Pt 20):3547–3558. doi:10.1242/jeb.006924

    Article  PubMed  CAS  Google Scholar 

  • Kocher SD, Ayroles JF, Stone EA, Grozinger CM (2011) Individual variation in pheromone response correlates with reproductive traits and brain gene expression in worker honey bees. PLoS ONE 5(2):e9116. doi:10.1371/journal.pone.0009116

  • König C, Schmid-Hempel P (1995) Foraging activity and immunocompetence in workers of the bumble bee, Bombus terrestris L. Proc Biol Sci 260(1358):225–227

    Article  Google Scholar 

  • Laidlaw H Jr (1987) Instrumental insemination of honey bee queens: its origin and development. Bee World 68:17–38

    Google Scholar 

  • Linn CE Jr, Roelofs WL (1984) Sublethal effects of neuroactive compounds on pheromone response thresholds in male oriental fruit moths. Arch Insect Biochem Physiol 1:331–344

    Article  CAS  Google Scholar 

  • Linn CE Jr, Campbell MG, Roelofs WL (1986) Male moth sensitivity to multicomponent pheromones: critical role of female-released blend in determining the functional role of components and active space of the pheromone. J Chem Ecol 12(3):659–668

    Article  CAS  Google Scholar 

  • Linn CE Jr, Campbell MG, Roelofs WL (1992) Photoperiod cues and the modulatory action of octopamine and 5-hydroxytryptamine on locomotor and pheromone response in male gypsy moths, Lymantria dispar. Arch Insect Biochem Physiol 20(4):265–284

    Article  CAS  Google Scholar 

  • Linn CE Jr, Campbell MG, Poole KR, Wu WQ, Roelofs WL (1996) Effects of photoperiod on the circadian timing of pheromone response in male Trichoplusia ni: relationship to the modulatory action of octopamine. J Insect Physiol 42(9):881–891

    Article  CAS  Google Scholar 

  • Mery F, Belay AT, So AK, Sokolowski MB, Kawecki TJ (2007) Natural polymorphism affecting learning and memory in Drosophila. Proc Natl Acad Sci USA 104(32):13051–13055. doi:10.1073/pnas.0702923104

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Kumar VB, Mattammal MB, Farr S, Morley PM, Flood JF (1996) Inhibition of feeding by a nitric oxide synthase inhibitor: effects of aging. Eur J Pharmacol 311(1):15–19. doi:0014299996005468

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Alshaher MM, Farr SA, Flood JF, Kumar VB (1999) Leptin and neuropeptide Y (NPY) modulate nitric oxide synthase: further evidence for a role of nitric oxide in feeding. Peptides 20(5):595–600. doi:S0196-9781(99)00012-1

    Article  PubMed  CAS  Google Scholar 

  • Pankiw T, Winston ML, Slessor KN (1994) Variation in worker response to honey bee (Apis mellifera L.) queen mandibular pheromone (Hymenoptera: Apidae). J Insect Behav 7(1):1–15

    Article  Google Scholar 

  • Pankiw T, Huang Z-Y, Winston ML, Robinson GE (1998) Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J Insect Physiol 44(7–8):685–692. pii:S0022191098000407

    Google Scholar 

  • Pereira HS, Sokolowski MB (1993) Mutations in the larval foraging gene affect adult locomotory behavior after feeding in Drosophila melanogaster. Proc Natl Acad Sci USA 90(11):5044–5046

    Article  PubMed  CAS  Google Scholar 

  • Pham-Delegue MH, Trouiller E, Bakchine E, Roger B, Masson C (1993) Age dependency of worker bee responses to queen pheromone in a four-armed olfactometer. Ins Sociaux 38(3):283–292. doi:10.1007/BF01314914

    Article  Google Scholar 

  • Pophof B (2000) Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons. J Comp Physiol A 186(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res 16(11):1395–1403. doi:10.1101/gr.5057506

    Article  PubMed  CAS  Google Scholar 

  • Robinson GE (1987) Regulation of honey bee age polyethism by juvenile hormone. Behav Ecol Sociobiol 20(5):329–338

    Article  Google Scholar 

  • Sachse S, Rappert A, Galizia CG (1999) The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci 11(11):3970–3978

    Article  PubMed  CAS  Google Scholar 

  • Scheiner R, Sokolowski MB, Erber J (2004) Activity of cGMP-dependent protein kinase (PKG) affects sucrose responsiveness and habituation in Drosophila melanogaster. Learn Mem 11(3):303–311. doi:10.1101/lm.7160411/3/303

    Article  PubMed  Google Scholar 

  • Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187(1):53–61

    Article  PubMed  CAS  Google Scholar 

  • Slessor KN, Kaminski L-A, King GGS, Borden JH, Winston ML (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332(6162):354–356

    Article  CAS  Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31(11):2731–2745. doi:10.1007/s10886-005-7623-9

    Google Scholar 

  • Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208(Pt 24):4641–4649. doi:10.1242/jeb.01956

    Article  PubMed  Google Scholar 

  • Touhara K, Vosshall LB (2009) Sensing odorants and pheromones with chemosensory receptors. Annu Rev Physiol 71:307–332. doi:10.1146/annurev.physiol.010908.163209

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Pan Y, Li W, Jiang H, Chatzimanolis L, Chang J, Gong Z, Liu L (2008) Visual pattern memory requires foraging function in the central complex of Drosophila. Learn Mem 15(3):133–142. doi:10.1101/lm.873008

    Article  PubMed  Google Scholar 

  • Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, Robertson HM (2007) A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA 104(36):14383–14388. doi:10.1073/pnas.0705459104

    Article  PubMed  CAS  Google Scholar 

  • Whitfield CW, Ben-Shahar Y, Brillet C, Leoncini I, Crauser D, Leconte Y, Rodriguez-Zas S, Robinson GE (2006) Genomic dissection of behavioral maturation in the honey bee. Proc Natl Acad Sci USA 103(44):16068–16075. doi:10.1073/pnas.0606909103

    Article  PubMed  CAS  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, New York

    Book  Google Scholar 

  • Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45(2):193–200. doi:10.1016/j.neuron.2004.12.031

    Article  PubMed  CAS  Google Scholar 

  • Zhukovskaya MI, Kapitsky SV (2006) Activity modulation in cockroach sensillum: the role of octopamine. J Insect Physiol 52(1):76–86. doi:10.1016/j.jinsphys.2005.09.005

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Kocher for advice on the microarray analyses, J. Flowers for expert beekeeping assistance, T. Crowgey and H. Yamamoto for assistance with the behavioral assays, and the rest of the Grozinger lab for insightful comments and helpful discussions. This research was supported by an NIH-NIDCD grant to G.E. Robinson (subcontract to C.M.G.) and an NSF CAREER grant to C.M.G. Animal care and collection of data was in accordance with US laws. The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendon L. Fussnecker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOC 378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fussnecker, B.L., McKenzie, A.M. & Grozinger, C.M. cGMP modulates responses to queen mandibular pheromone in worker honey bees. J Comp Physiol A 197, 939–948 (2011). https://doi.org/10.1007/s00359-011-0654-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0654-5

Keywords

Navigation