Skip to main content

Advertisement

Log in

A detailed paraxial schematic eye for the White Leghorn chick

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We studied the normal ocular development of the chick (Gallus gallus domesticus, White Leghorn) up to 15 days of age using both longitudinal and cross-sectional methods. The change in refractive error, corneal curvature and axial ocular distances were used to construct schematic eyes. Equations are presented which allow prediction of refractive error changes associated with changes in vitreous chamber depth. The mean refractive error was +3.2 D at hatching, which reduced by 66% over the first 3 days and stabilized by 11 days of age. The lens thickened and the anterior chamber deepened from hatching, but vitreal elongation and corneal flattening were delayed until after the first 3 days, suggesting that normal eye growth may be initially inhibited or inactive during an initial emmetropization period, and subsequently activated in response to myopic defocus arising from the continually expanding lens. Finally, when compared with published data on other chick strains, we find differences in the degree of hyperopia at hatching due to differences in lens thickness. However, the rate of ocular and vitreal expansion and the developmental changes in corneal power are similar, making the schematic eyes presented here generally applicable to different strains of chickens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

F :

Corneal power (diopters)

n :

Refractive index

r :

Radius of curvature (m)

PND:

Posterior nodal distance

RoC:

Radius of curvature

References

  • Andison ME, Sivak JG, Bird DM (1992) The refractive development of the eye of the American kestrel (Falco sparverius): a new avian model. J Comp Physiol A 170:565–574

    Article  CAS  PubMed  Google Scholar 

  • Block MT (1969) A note on the refraction and image formation of the rat’s eye. Vis Res 9:705–711

    Article  CAS  PubMed  Google Scholar 

  • Bowmaker JK, Heath LA, Wilkie SE, Hunt DM (1997) Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vis Res 37:2183–2194

    Article  CAS  PubMed  Google Scholar 

  • Buttery RG, Hinrichsen CFL, Weller WL, Haight JR (1991) How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis Res 31:169–187

    Article  CAS  PubMed  Google Scholar 

  • Charman WN, Tucker J (1973) The optical system of the goldfish eye. Vis Res 13:1–8

    Article  CAS  PubMed  Google Scholar 

  • Du Pont JS, De Groot PJ (1976) A schematic dioptric apparatus for the frog’s eye (Rana esculenta). Vis Res 16:803–810

    Article  CAS  PubMed  Google Scholar 

  • Duke-Elder S (1958) The eye in evolution, vol 1. System of Ophthalmology, Kimpton

    Google Scholar 

  • Emsley HH (1953) Visual optics. Butterworth Group, London

    Google Scholar 

  • Glickstein M, Millodot M (1970) Retinoscopy and eye size. Science 168:605–606

    Article  CAS  PubMed  Google Scholar 

  • Helmholtz HV, Southall JPC (1962) Helmholtz’s treatise on physiological optics. Dover Publications, New York

    Google Scholar 

  • Howlett MH, McFadden SA (2007) Emmetropization and schematic eye models in developing pigmented guinea pigs. Vis Res 47:1178–1190

    Article  PubMed  Google Scholar 

  • Hughes A (1972) A schematic eye for the rabbit. Vis Res 12:123–138

    Article  CAS  PubMed  Google Scholar 

  • Hughes A (1976) A supplement to the cat schematic eye. Vis Res 16:149–154

    Article  CAS  PubMed  Google Scholar 

  • Hughes A (1979) A schematic eye for the rat. Vis Res 19:569–588

    Article  CAS  PubMed  Google Scholar 

  • Irving EL, Sivak JG, Curry TA, Callender MG (1996) Chick eye optics: zero to fourteen days. J Comp Physiol A 179:185–194

    Article  CAS  PubMed  Google Scholar 

  • Kisilak ML, Campbell MC, Hunter JJ, Irving EL, Huang L (2006) Aberrations of chick eyes during normal growth and lens induction myopia. J Comp Physiol A 192:845–855

    Article  Google Scholar 

  • Land MF (1969) Structure of the retinae of the principal eyes of jumping spiders (Salticidae: dendryphantinae) in relation to visual optics. J Exp Biol 51:443–470

    Article  CAS  PubMed  Google Scholar 

  • Lapuerta P, Schein SJ (1995) A four-surface schematic eye of Macaque monkey obtained by an optical method. Vis Res 35:2245–2254

    Article  CAS  PubMed  Google Scholar 

  • Marshall J, Mellerio J, Palmer DA (1973) A schematic eye for the pigeon (Columba livia). Vis Res 13:2449–2453

    Article  CAS  PubMed  Google Scholar 

  • Martin GR (1986) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol A 159:545–557

    Article  Google Scholar 

  • Martin GR (1993) Producing the image. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behavior in birds. MIT Press, London, pp 5–24

    Google Scholar 

  • Martin GR, Ashash U, Katzir G (2001) Ostrich ocular optics. Brain Behav Evol 58:115–120

    Article  CAS  PubMed  Google Scholar 

  • Massof RW, Chang FW (1972) A revision of the rat schematic eye. Vis Res 12:793–796

    Article  CAS  PubMed  Google Scholar 

  • Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB (2001) Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol 119:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • McLean R, Wallman J (2003) Severe astigmatic blur does not interfere with spectacle lens compensation. Invest Ophthalmol Vis Sci 44:449–457

    Article  PubMed  Google Scholar 

  • Nickla DL, Wildsoet C, Wallman J (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 66:163–181

    Article  CAS  PubMed  Google Scholar 

  • Norton TT, McBrien NA (1992) Normal development of refractive state and ocular component dimensions in the tree shrew (Tupaia belangeri). Vis Res 32:833–842

    Article  CAS  PubMed  Google Scholar 

  • Oswaldo-Cruz E, Hokoc JN, Sousa AP (1979) A schematic eye for the opossum. Vis Res 19:263–278

    Article  CAS  PubMed  Google Scholar 

  • Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vis Res 25:21–31

    Article  CAS  PubMed  Google Scholar 

  • Schaeffel F, Howland HC (1988) Visual optics in normal and ametropic chickens. Clin Vis Sci 3:83–98

    Google Scholar 

  • Schaeffel F, Wagner H (1996) Emmetropization and optical development of the eye of the barn owl (Tyto Alba). J Comp Physiol A 178:491–498

    Article  Google Scholar 

  • Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error and eye growth in chickens. Vis Res 28:639–657

    Article  CAS  PubMed  Google Scholar 

  • Schmid GF, Papastergiou GI, Nickla DL, Riva CE, Lin T, Stone RA, Laties AM (1996) Validation of laser Doppler interferometric measurements in vivo of axial eye length and thickness of fundus layers in chicks. Curr Eye Res 15:691–696

    Article  CAS  PubMed  Google Scholar 

  • Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vis Res 44:1857–1867

    Article  PubMed  Google Scholar 

  • Sivak JG, Ryall LA, Weerheim J, Campbell MC (1989) Optical constancy of the chick lens during pre- and post-hatching ocular development. Invest Ophthalmol Vis Sci 30:967–974

    CAS  PubMed  Google Scholar 

  • Troilo D, Howland HC, Judge SJ (1993) Visual optics and retinal cone topography in the common marmoset (Callithrix jacchus). Vis Res 33:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Troilo D, Li T, Glasser A, Howland HC (1995) Differences in eye growth and the response to visual deprivation in different strains of chicken. Vis Res 35:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Vakkur GJ, Bishop PO (1963) The schematic eye in the cat. Vis Res 3:357–381

    Article  Google Scholar 

  • Wallman J, Winawer J (2004) Homeostasis of eye growth and the question of myopia. Neuron 43:447–468

    Article  CAS  PubMed  Google Scholar 

  • Wallman J, Adams JI, Trachtman JN (1981) The eyes of young chickens grow toward emmetropia. Invest Ophthalmol Vis Sci 20:557–561

    CAS  PubMed  Google Scholar 

  • Walls GL (1963) The vertebrate eye and its adaptive radiation. Hafner, New York

    Google Scholar 

  • Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vis Res 35:1175–1194

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Eleanor Huber, School of Psychology, The University of Newcastle for animal care and husbandry. All procedures were approved by the University of Newcastle Animal Care and Ethics Committee in accordance with the NSW Animal Research Act (1985) and complied with NIH guidelines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia V. Avila.

Electronic supplementary material

These files are unfortunately not in the Publisher's archive anymore: Supplementary material 1 to 5 (LEN 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, N.V., McFadden, S.A. A detailed paraxial schematic eye for the White Leghorn chick. J Comp Physiol A 196, 825–840 (2010). https://doi.org/10.1007/s00359-010-0562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0562-0

Keywords

Navigation