Skip to main content
Log in

Unaltered D1, D2, D4, and D5 dopamine receptor mRNA expression and distribution in the spinal cord of the D3 receptor knockout mouse

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Dopamine (DA) acts through five receptor subtypes (D1–D5). We compared expression levels and distribution patterns of all DA mRNA receptors in the spinal cord of wild-type (WT) and loss of function D3 receptor knockout (D3KO) animals. D3 mRNA expression was increased in D3KO, but no D3 receptor protein was associated with cell membranes, supporting the previously reported lack of function. In contrast, mRNA expression levels and distribution patterns of D1, D2, D4, and D5 receptors were similar between WT and D3KO animals. We conclude that D3KO spinal neurons do not compensate for the loss of function of the D3 receptor with changes in the other DA receptor subtypes. This supports use of D3KO animals as a model to provide insight into D3 receptor dysfunction in the spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

D3KO:

D3 receptor knockout

DA:

Dopamine

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

ISH:

In situ hybridization

PBST:

PBS containing 0.3% Triton X-100

PCR:

Polymerase chain reaction

WT:

Wild-type

References

  • Accili D, Fishburn CS, Drago J, Steiner H, Lachowicz JE, Park BH, Gauda EB, Lee EJ, Cool MH, Sibley DR, Gerfen CR, Westphal H, Fuchs S (1996) A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 93:1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, Pocchiari F, Felder RA, Eisner GM, Jose PA (1998) Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 102:493–498

    Article  PubMed  CAS  Google Scholar 

  • Bara-Jimenez W, Aksu M, Graham B, Sato S, Hallett M (2000) Periodic limb movements in sleep: state-dependent excitability of the spinal flexor reflex. Neurology 54:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Barriere G, Cazalets JR, Bioulac B, Tison F, Ghorayeb I (2005) The restless legs syndrome. Prog Neurobiol 77:139–165

    Article  PubMed  CAS  Google Scholar 

  • Barriere G, Mellen N, Cazalets JR (2004) Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur J Neurosci 19:1325–1335

    Article  PubMed  Google Scholar 

  • Branchi I, Ricceri L (2002) Transgenic and knock-out mouse pups: the growing need for behavioral analysis. Genes, brain, and behavior 1:135–141

    Article  PubMed  CAS  Google Scholar 

  • Carp JS, Anderson RJ (1982) Dopamine receptor-mediated depression of spinal monosynaptic transmission. Brain Res 242:247–254

    Article  PubMed  CAS  Google Scholar 

  • Centonze D, Grande C, Usiello A, Gubellini P, Erbs E, Martin AB, Pisani A, Tognazzi N, Bernardi G, Moratalla R, Borrelli E, Calabresi P (2003) Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. J Neurosci 23:6245–6254

    PubMed  CAS  Google Scholar 

  • Clemens S, Hochman S (2004) Conversion of the modulatory actions of dopamine on spinal reflexes from depression to facilitation in D3 receptor knock-out mice. J Neurosci 24:11337–11345

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Sawchuk MA, Hochman S (2005) Reversal of the circadian expression of tyrosine-hydroxylase but not nitric oxide synthase levels in the spinal cord of D3 receptor knockout mice. Neuroscience 133:353–357

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Rye D, Hochman S (2006) Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67:125–130

    Article  PubMed  Google Scholar 

  • Drago J, Padungchaichot P, Accili D, Fuchs S (1998) Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants. Dev Neurosci 20:188–203

    Article  PubMed  CAS  Google Scholar 

  • Drago J, McColl CD, Horne MK, Finkelstein DI, Ross SA (2003) Neuronal nicotinic receptors: insights gained from gene knockout and knockin mutant mice. Cell Mol Life Sci 60:1267–1280

    Article  PubMed  CAS  Google Scholar 

  • Gajendiran M, Seth P, Ganguly DK (1996) Involvement of the presynaptic dopamine D2 receptor in the depression of spinal reflex by apomorphine. Neuroreport 7:513–516

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Falzone TL, Zhang K, Rubinstein M, Baldessarini RJ, Tarazi FI (2004) Enhanced expression of dopamine D(1) and glutamate NMDA receptors in dopamine D(4) receptor knockout mice. J Mol Neurosci 22:167–178

    Article  PubMed  CAS  Google Scholar 

  • Goody RJ, Oakley SM, Filliol D, Kieffer BL, Kitchen I (2002) Quantitative autoradiographic mapping of opioid receptors in the brain of delta-opioid receptor gene knockout mice. Brain Res 945:9–19

    Article  PubMed  CAS  Google Scholar 

  • Han P, Nakanishi ST, Tran MA, Whelan PJ (2007) Dopaminergic modulation of spinal neuronal excitability. J Neurosci 27:13192–13204

    Article  PubMed  CAS  Google Scholar 

  • Hannon JP, Petrucci C, Fehlmann D, Viollet C, Epelbaum J, Hoyer D (2002) Somatostatin sst2 receptor knock-out mice: localisation of sst1–5 receptor mRNA and binding in mouse brain by semi-quantitative RT-PCR, in situ hybridisation histochemistry and receptor autoradiography. Neuropharmacology 42:396–413

    Article  PubMed  CAS  Google Scholar 

  • Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A, Drago J, Young WS III, Westphal H, Jose PA, Sibley DR (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci 22:10801–10810

    PubMed  CAS  Google Scholar 

  • Jaber M, Robinson SW, Missale C, Caron MG (1996) Dopamine receptors and brain function. Neuropharmacology 35:1503–1519

    Article  PubMed  CAS  Google Scholar 

  • Jackson DM, Westlind-Danielsson A (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64:291–369

    Article  PubMed  CAS  Google Scholar 

  • Joyce JN (1983) Multiple dopamine receptors and behavior. Neurosci Biobehav Rev 7:227–259

    Article  PubMed  CAS  Google Scholar 

  • Jung MY, Skryabin BV, Arai M, Abbondanzo S, Fu D, Brosius J, Robakis NK, Polites HG, Pintar JE, Schmauss C (1999) Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience 91:911–924

    Article  PubMed  CAS  Google Scholar 

  • Karasinska JM, George SR, El-Ghundi M, Fletcher PJ, O’Dowd BF (2000) Modification of dopamine D(1) receptor knockout phenotype in mice lacking both dopamine D(1) and D(3) receptors. Eur J Pharmacol 399:171–181

    Article  PubMed  CAS  Google Scholar 

  • Karper PE, De la Rosa H, Newman ER, Krall CM, Nazarian A, McDougall SA, Crawford CA (2002) Role of D1-like receptors in amphetamine-induced behavioral sensitization: a study using D1A receptor knockout mice. Psychopharmacology (Berl) 159:407–414

    Article  CAS  Google Scholar 

  • Kobayashi M, Iaccarino C, Saiardi A, Heidt V, Bozzi Y, Picetti R, Vitale C, Westphal H, Drago J, Borrelli E (2004) Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci USA 101:11465–11470

    Article  PubMed  CAS  Google Scholar 

  • Law AK, Pencea V, Buck CR, Luskin MB (1999) Neurogenesis and neuronal migration in the neonatal rat forebrain anterior subventricular zone do not require GFAP-positive astrocytes. Dev Biol 216:622–634

    Article  PubMed  CAS  Google Scholar 

  • Leggio GM, Micale V, Drago F (2008) Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST). Eur Neuropsychopharmacol 18:271–277

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • McDougall SA, Reichel CM, Cyr MC, Karper PE, Nazarian A, Crawford CA (2005) Importance of D(1) receptors for associative components of amphetamine-induced behavioral sensitization and conditioned activity: a study using D(1) receptor knockout mice. Psychopharmacology (Berl) 183:20–30

    Article  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Montplaisir J, Nicolas A, Denesle R, Gomez-Mancilla B (1999) Restless legs syndrome improved by pramipexole: a double-blind randomized trial. Neurology 52:938–943

    PubMed  CAS  Google Scholar 

  • Montplaisir J, Denesle R, Petit D (2000) Pramipexole in the treatment of restless legs syndrome: a follow-up study. Eur J Neurol 7(Suppl 1):27–31

    Article  PubMed  Google Scholar 

  • Odin P, Mrowka M, Shing M (2002) Restless legs syndrome. Eur J Neurol 9(Suppl 3):59–67

    Article  PubMed  Google Scholar 

  • Ondo WG, Zhao HR, Le WD (2007) Animal models of restless legs syndrome. Sleep Med 8:344–348

    Article  PubMed  CAS  Google Scholar 

  • Park Y, Ho IK, Fan LW, Loh HH, Ko KH (2001) Region specific increase of dopamine receptor D1/D2 mRNA expression in the brain of mu-opioid receptor knockout mice. Brain Res 894:311–315

    Article  PubMed  CAS  Google Scholar 

  • Pich EM, Epping-Jordan MP (1998) Transgenic mice in drug dependence research. Annals of medicine 30:390–396

    Article  PubMed  CAS  Google Scholar 

  • Steiner H, Fuchs S, Accili D (1998) D3 Dopamine receptor-deficient mouse: evidence for reduced anxiety. Physiol Behav 63:137–141

    Article  CAS  Google Scholar 

  • Tien LT, Park Y, Fan LW, Ma T, Loh HH, Ho IK (2003) Increased dopamine D2 receptor binding and enhanced apomorphine-induced locomotor activity in mu-opioid receptor knockout mice. Brain Res Bull 61:109–115

    Article  PubMed  CAS  Google Scholar 

  • Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T (2005) Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 102:2117–2122

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Zhu W, Pan T, Xie W, Zhang A, Ondo WG, Le W (2007) Spinal cord dopamine receptor expression and function in mice with 6-OHDA lesion of the A11 nucleus and dietary iron deprivation. J Neurosci Res 85:1065–1076

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Clemens S, Sawchuk M, Hochman S (2007) Expression and distribution of all dopamine receptor subtypes (D1–D5) in the mouse lumbar spinal cord: a real-time polymerase chain reaction and non-autoradiographic in situ hybridization study. Neuroscience 149:885–897

    Article  PubMed  CAS  Google Scholar 

  • Zucconi M, Ferini-Strambi L (2004) Epidemiology and clinical findings of restless legs syndrome. Sleep Med 5:293–299

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was awarded from the National Institutes of Health, NINDS, Grant NS045248. All experimental procedures complied with the “Principles of animal care,” publication No. 86-23, revised 1985 by the NIH, and the Emory Institutional Animal Care and Use Committee. We thank Dr Dapeng Cui for assistance with real-time PCR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn Hochman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Clemens, S., Sawchuk, M. et al. Unaltered D1, D2, D4, and D5 dopamine receptor mRNA expression and distribution in the spinal cord of the D3 receptor knockout mouse. J Comp Physiol A 194, 957–962 (2008). https://doi.org/10.1007/s00359-008-0368-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-008-0368-5

Keywords

Navigation