Skip to main content
Log in

Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

We investigate the organization of behaviour across sensory modalities, using larval Drosophila melanogaster. We ask whether olfactory learning and behaviour are affected by visual processing. We find that: (1) Visual choice does not affect concomitant odour choice. (2) Visual context does not influence odour learning, nor do changes of visual context between training and test affect retrieval of odour memory. (3) Larvae cannot solve a biconditional discrimination task, despite generally permissive conditions. In this task, larvae are required to establish conditional associations: in light, one odour is rewarded and the other one is not, whereas in dark the opposite contingency is established. After such training, choice between the two odours is equal under light and dark testing conditions, suggesting that larvae do not establish odour memories specifically for one visual context only. Together, these data suggest that, in larval Drosophila, olfactory learning and behaviour are ‘insulated’ against visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AM:

Amylacetate

FRU:

Fructose

LI:

Learning index

OCT:

1-octanol

PREF:

Preference

QUI:

Quinine hemisulfate

+:

Positive reinforcement

−:

Negative reinforcement

References

  • Bitterman ME (1996) Comparative analysis of learning in honeybees. Anim Learn Behav 24:123–141

    Google Scholar 

  • Brembs B, Heisenberg M (2001) Conditioning with compound stimuli in Drosophila at the flight simulator. J Exp Biol 204:2849–2859

    PubMed  CAS  Google Scholar 

  • Chandra S, Smith BH (1998) An analysis of synthetic processing of odor mixtures in the honeybee (Apis mellifera). J Exp Biol 201:3113–3121

    PubMed  CAS  Google Scholar 

  • Couvillon PA, Campos AC, Bass TD, Bitterman ME (2001) Intermodal blocking in honeybees. Q J Exp Psychol B 54:369–381

    Article  PubMed  CAS  Google Scholar 

  • Frye MA, Dickinson MH (2004) Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila. J Exp Biol 207:123–131

    Article  PubMed  Google Scholar 

  • Frye MA, Tarsitano M, Dickinson MH (2003) Odor localization requires visual feedback during free flight in Drosophila melanogaster. J Exp Biol 206:843–855

    Article  PubMed  Google Scholar 

  • Gerber B, Geberzahn N, Hellstern F, Klein J, Kowalsky O, Wüstenberg D, Menzel R (1996) Honey bees transfer olfactory memories established during flower visits to a proboscis extension paradigm in the laboratory. Anim Behav 52:1079–1085

    Article  Google Scholar 

  • Gerber B, Menzel R (2000) Contextual modulation of memory consolidation. Learn Mem 7:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gerber B, Scherer S, Neuser K, Michels B, Hendel T, Stocker RF, Heisenberg M (2004) Visual learning in individually assayed Drosophila larvae. J Exp Biol 207:179–188

    Article  PubMed  CAS  Google Scholar 

  • Gerber B, Smith BH (1998) Visual modulation of olfactory learning in honeybees. J Exp Biol 201:2213–2217

    PubMed  CAS  Google Scholar 

  • Gerber B, Ullrich J (1999) No evidence for olfactory blocking in honeybee classical conditioning. J Exp Biol 202:1839–1854

    PubMed  Google Scholar 

  • Guerrieri F, Lachnit H, Gerber B, Giurfa M (2005) Olfactory blocking and odorant similarity in the honeybee. Learn Mem 12:86–95

    Article  PubMed  Google Scholar 

  • Guo J, Guo A (2005) Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309:307–310

    Article  PubMed  CAS  Google Scholar 

  • Hellstern F, Wüstenberg D, Hammer M (1995) Contextual learning in honeybees under laboratory conditions. In: Elsner N, Menzel R (eds) Learning and memory: proceedings of the 23rd Göttingen neurobiology conference, vol. 1, pp 30. Stuttgart: Georg Thieme Verlag

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  PubMed  CAS  Google Scholar 

  • Hendel T, Michels B, Neuser K, Schipanski A, Kaun K, Sokolowski MB, Marohn F, Michel R, Heisenberg M, Gerber B (2005) The carrot, not the stick: appetitive rather than aversive gustatory stimuli support associative olfactory learning in individually assayed Drosophila larvae. J Comp Physiol A 191:265–279

    Article  Google Scholar 

  • Hori S, Takeuchi H, Arikawa K, Kinoshita M, Ichikawa N, Sasaki M, Kubo T (2006) Associative visual learning, color discrimination, and chromatic adaptation in the harnessed honeybee Apis mellifera L. J Comp Physiol A (in press)

  • Hosler JS, Smith BH (2000) Blocking and the detection of odor components in blends. J Exp Biol 203:2797–2806

    PubMed  CAS  Google Scholar 

  • Kuwabara M (1957) Bildung des bedingten Reflexes von Pavlovs Typus bei der Honigbiene, Apis mellifica. J Faculty Sci, Hokkaido University, Series VI, Zoology 13:458–464

  • Liu L, Wolf R, Ernst R, Heisenberg M (1999) Context generalization in Drosophila visual learning requires the mushroom bodies. Nature 400:753–756

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto Y, Mizunami M (2004) Context-dependent olfactory learning in an insect. Learn Mem 11:288–293

    Article  PubMed  Google Scholar 

  • Michels B, Diegelmann S, Tanimoto H, Schwenkert I, Buchner E, Gerber B (2005) A role of synapsin for associative learning: the Drosophila larva as a study case. Learn Mem 12:224–231

    Article  PubMed  Google Scholar 

  • Müller D, Gerber B, Hellstern F, Hammer M, Menzel R (2000) Sensory preconditioning in honeybees. J Exp Biol 203:1351–1364

    PubMed  Google Scholar 

  • Neuser K, Husse J, Stock P, Gerber B (2005) Appetitive olfactory learning in Drosophila larvae: effects of repetition, reward strength, age, gender, assay type and memory span. Anim Behav 69:891–898

    Article  Google Scholar 

  • Pelz C, Gerber B, Menzel R (1997) Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J Exp Biol 200:837–847

    PubMed  CAS  Google Scholar 

  • Ramaekers A, Magnenat E, Marin E, Gendre N, Jefferis G, Luo L, Stocker R (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr Biol 15:1–11

    Article  Google Scholar 

  • Reisenman CE, Lorenzo Figueiras AN, Giurfa M, Lazzari CR (2000) Interaction of visual and olfactory cues in the aggregation behaviour of the haematophagous bug Triatoma infestans. J Comp Physiol [A] 186:961–968

    Article  CAS  Google Scholar 

  • Sandoz JC, Laloi D, Odoux JF, Pham-Delegue MH (2000) Olfactory information transfer in the honeybee: compared efficiency of classical conditioning and early exposure. Anim Behav 59:1025–1034

    Article  PubMed  Google Scholar 

  • Scherer S, Stocker RF, Gerber B (2003) Olfactory learning in individually assayed Drosophila larvae. Learn Mem 10:217–225

    Article  PubMed  Google Scholar 

  • Schubert M, Lachnit H, Francucci S, Giurfa M (2002) Nonelemental visual learning in honeybees. Anim Behav 64:175–184

    Article  Google Scholar 

  • Sherman A, Dickinson MH (2004) Summation of visual and mechanosensory feedback in Drosophila flight control. J Exp Biol 207:133–142

    Article  PubMed  Google Scholar 

  • Smith BH (1998) Analysis of interaction in binary odorant mixtures. Physiol Behav 65:397–407

    Article  PubMed  CAS  Google Scholar 

  • Sokolowski MB (2001) Drosophila: genetics meets behaviour. Nat Rev Genet 2:879–890

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by a Young Investigator Grant from the German-Israeli Foundation for Scientific Research and Development (to B.G.; GIF 1326-202.8/2003). Current support to A.Y. comes from a PhD fellowship of the Boehringer Ingelheim Fonds.Thanks to Yi-chun Chen, Julia Ehmer, Katharina Gerber, Angelika Kronhard and Timo Saumweber for enthusiastic and reliable help with the experiments; to Jens Rister for discussion of pattern-colour processing; to the members of the department and foremost Martin Heisenberg for continuous encouragement and discussion. Our experiments comply with applicable law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram Gerber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarali, A., Hendel, T. & Gerber, B. Olfactory learning and behaviour are ‘insulated’ against visual processing in larval Drosophila . J Comp Physiol A 192, 1133–1145 (2006). https://doi.org/10.1007/s00359-006-0140-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-006-0140-7

Keywords

Navigation