Skip to main content
Log in

Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Microspectrophotometry of rod photoreceptors was used to follow variations in visual pigment vitamin A1/A2 ratio at various life history stages in coho salmon. Coho parr shifted their A1/A2 ratio seasonally with A2 increasing during winter and decreasing in summer. The cyclical pattern was statistically examined by a least-squares cosine model, fit to the 12-month data sets collected from different populations. A1/A2 ratio varied with temperature and day length. In 1+ (>12 month old) parr the A2 to A1 shift in spring coincided with smoltification, a metamorphic transition preceding seaward migration in salmonids. The coincidence of the shift from A2 to A1 with both the spring increase in temperature and day length, and with the timing of seaward migration presented a challenge for interpretation. Our data show a shift in A1/A2 ratio correlated with season, in both 0+ (<12 months old) coho parr that remained in fresh water for another year and in oceanic juvenile coho. These findings support the hypothesis that the A1/A2 pigment pair system in coho is an adaptation to seasonal variations in environmental variables rather than to a change associated with migration or metamorphosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ala-Laurila P, Pahlberg J, Koskelainen A, Donner K (2004) On the relation between the photoactivation energy and the absorbance spectrum of visual pigments. Vision Res 44:2153–2158

    Article  PubMed  Google Scholar 

  • Alexander G, Sweeting R, McKeown B (1994) The shift in visual pigment dominance in the retinae of juvenile coho salmon (Oncorhynchus kisutch): an indicator of smolt status. J Exp Biol 195:185–197

    PubMed  Google Scholar 

  • Alexander G, Sweeting R, McKeown BA (1998) The effect of thyroid hormone and thyroid hormone blocker on visual pigment shifting in juvenile coho salmon (Oncorhynchus kisutch). Aquaculture 168:157–168

    Article  CAS  Google Scholar 

  • Allen DM (1971) Photic control of the proportions of two visual pigments in a fish. Vision Res 11:1077–1112

    Article  PubMed  CAS  Google Scholar 

  • Allen DM (1977) Measurements of serum thyroxine and the proportions of rhodopsin and porphyropsin in rainbow trout. Can J Zool 55:836–842

    PubMed  CAS  Google Scholar 

  • Allen DM, McFarland WN (1973) The effect of temperature on rhodopsin-porphyropsin ratios in a fish. Vision Res 13:1303–1309

    Article  PubMed  CAS  Google Scholar 

  • Allen DM, Munz FW (1983) Visual pigment mixtures and scotopic spectral sensitivity in rainbow trout. Environ Biol Fishes 8:185–190

    Article  CAS  Google Scholar 

  • Allen DM, McFarland WN, Munz FW, Poston HA (1973) Changes in the visual pigments of trout. Can J Zool 51:901–914

    Article  PubMed  CAS  Google Scholar 

  • Allen DM, Loew ER, McFarland WN (1982) Seasonal change in the amount of visual pigment in the retinae of fish. Can J Zool 60:281–287

    Article  Google Scholar 

  • Allison WT, Dann SG, Vidar Helvik J, Bradley C, Moyer HD, Hawryshyn CW (2003) Ontogeny of ultraviolet-sensitive cones in the retina of rainbow trout (Oncorhynchus mykiss). J Comp Neurol 461:294–306

    Article  PubMed  Google Scholar 

  • Allison WT, Haimberger TJ, Hawryshyn CW, Temple SE (2004) Visual pigment composition in zebrafish: Evidence for a rhodopsin-porphyropsin interchange system. Vis Neurosci 21:945–952

    Article  PubMed  Google Scholar 

  • Barlow HB (1956) Retinal noise and absolute threshold. J Opt Soc Am 46:634–639

    PubMed  CAS  Google Scholar 

  • Barlow HB (1957) Purkinje shift and retinal noise. Nature 179:255–256

    Article  PubMed  CAS  Google Scholar 

  • Beatty DD (1966) A study of the succession of visual pigments in Pacific salmon (Oncorhynchus). Can J Zool 44:429–455

    PubMed  CAS  Google Scholar 

  • Beatty DD (1969a) Visual pigment changes in juvenile kokanee salmon in response to thyroid hormones. Vision Res 9:855–864

    Article  CAS  Google Scholar 

  • Beatty DD (1969b) Visual pigments of the burbot, Lota lota, and seasonal changes in their relative proportions. Vision Res 9:1173–1183

    Article  CAS  Google Scholar 

  • Beatty DD (1972) Visual pigment changes in salmonid fishes in response to exogenous L-thyroxine, bovine TSH and 3-dehydroretinol. Vision Res 12:1947–1960

    Article  PubMed  CAS  Google Scholar 

  • Beatty DD (1975a) Rhodopsin–porphyropsin changes in paired-pigment fishes. In: Ali MA (ed) Vision in fishes. Plenium, New York, pp 635–644

    Google Scholar 

  • Beatty DD (1975b) Visual pigments of the American eel Anguilla rostrata. Vision Res 15:771–776

    Article  CAS  Google Scholar 

  • Beatty DD (1984) Visual pigments and the labile scotopic visual system of fish. Vision Res 24:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Bowmaker JK (1991) The evolution of vertebrate visual pigments and photoreceptors. In: Cronly-Dillon JR, Gregory RL (eds) Evolution of the eye and visual system. CRC Press Inc., Boca Raton, pp 63–81

    Google Scholar 

  • Bowmaker JK, Dartnall HJA, Herring PJ (1988) Longwave-sensitive visual pigments in some deep-sea fishes: segregation of “paired” rhodopsins and porphyropsins. J Comp Physiol A 163:685–698

    Article  Google Scholar 

  • Bridges CDB (1964a) Effect of season and environment on the retinal pigments of two Fishes. Nature 203:191–192

    Article  CAS  Google Scholar 

  • Bridges CDB (1964b) Variation of visual pigment amongst individuals of an American minnow, Notemigonus crysoleucas boscii. Vision Res 4:233–239

    Article  CAS  Google Scholar 

  • Bridges CDB (1965) The grouping of fish visual pigments about preferred positions in the spectrum. Vision Res 5:223–238

    Article  CAS  Google Scholar 

  • Bridges CDB (1967) Spectroscopic properties of porphyropsins. Vision Res 7:349–369

    Article  PubMed  CAS  Google Scholar 

  • Bridges CDB (1970) Reversible visual pigment changes in tadpoles exposed to light and darkness. Nature 227:956–957

    Article  PubMed  CAS  Google Scholar 

  • Bridges CDB (1972) The rhodopsin–porphyropsin visual system. In: Dartnall HJA (ed) Handbook of sensory physiology. Springer, Berlin, Heidelberg, New York, pp 417–480

    Google Scholar 

  • Bridges CDB (1982) Porphyropsin in retina of four-eyed fish Anableps anableps. Nature 300:384

    Article  PubMed  CAS  Google Scholar 

  • Bridges CDB, Yoshikami S (1970) The rhodopsin–porphyropsin system in freshwater fishes. 2. Turnover and interconversion of visual pigment prosthetic groups in light and darkness: role of the pigment epithelium. Vision Res 10:1333–1345

    Article  PubMed  CAS  Google Scholar 

  • Brown PK, Gibbons IR, Wald G (1963) The visual cells and visual pigment of the mudpuppy, Nectarus. J Cell Biol 19:79–106

    Article  PubMed  CAS  Google Scholar 

  • Carlisle DB, Denton EJ (1959) On the metamorphosis of the visual pigments of Anguilla anguilla (L.). J Mar Biolog Assoc UK 38:97–102

    Google Scholar 

  • Cohen JL, Hueter RE, Organisciak DT (1990) The presence of a porphyropsin-based visual pigment in the juvenile lemon shark (Negaprion brevirostris) Vision Res 30:1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Crescitelli F (1956) The nature of the lamprey visual pigments. J Gen Physiol 39:423–435

    Article  PubMed  CAS  Google Scholar 

  • Crescitelli F (1958) The natural history of visual pigments. Ann N Y Acad Sci 74:230–255

    Article  CAS  Google Scholar 

  • Crim JW (1975) Prolactin-thyroxine antagonism and the metamorphosis of visual pigments in Rana catesbeiana tadpoles. J Exp Zool 192:355–362

    Article  PubMed  CAS  Google Scholar 

  • Cristy M (1974) Effects of prolactin and thyroxine on the visual pigments of trout, Salmo gairdneri. Gen Comp Endocrinol 23:58–62

    Article  PubMed  CAS  Google Scholar 

  • Dartnall HJA, Lythgoe JN (1965) The spectral clustering of visual pigments. Vision Res 5:81–100

    Article  PubMed  CAS  Google Scholar 

  • Dartnall HJA, Lander MR, Munz FW (1961) Periodic changes in the visual pigment of a fish. In: Christensen BC, Buchmann B (eds) Progress in photobiology. Elsevier, Amsterdam, pp 203–213

    Google Scholar 

  • Denton EJ, Muntz WR, Northmore DP (1971) The distribution of visual pigment within the retina in two teleosts. J Mar Biolog Assoc UK 51:905–915

    Google Scholar 

  • Folmar LC, Dickhoff WW (1980) The Parr–Smolt transformation (smoltification) and seawater adaptation in salmonids - a review of selected literature. Aquaculture 21:1–37

    Article  CAS  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    Article  PubMed  CAS  Google Scholar 

  • Grau EG, Specker JL, Nishioka RS, Bern HA (1982) Factors determining the occurrence of the surge in thyroid activity in salmon during smoltification. Aquaculture 28:49–57

    Article  CAS  Google Scholar 

  • Harosi FI (1987) Cynomolgus and rhesus monkey visual pigments. Application of Fourier transform smoothing and statistical techniques to the determination of spectral parameters. J Gen Physiol 89:717–743

    Article  PubMed  CAS  Google Scholar 

  • Harosi FI (1994) An analysis of two spectral properties of vertebrate visual pigments. Vision Res 34:1359–1367

    Article  PubMed  CAS  Google Scholar 

  • Harosi FI, MacNichol EF Jr (1974) Visual pigments of goldfish cones. Spectral properties and dichroism. J Gen Physiol 63:279–304

    Article  PubMed  CAS  Google Scholar 

  • Hawryshyn CW, Haimberger TJ, Deutschlander ME (2001) Microspectrophotometric measurements of vertebrate photoreceptors using CCD-based detection technology. J Exp Biol 204:2431–2438

    PubMed  CAS  Google Scholar 

  • Higgs DA, Fagerlund UHM, Eales JG, McBride RE (1982) Application of thyroid and steroid hormones as anabolic agents in fish culture. Comp Biochem Physiol B Biochem Mol Biol 73:143–176

    Article  Google Scholar 

  • Hoar WS (1976) Smolt transformation: evolution, behaviour and physiology. J Fish Res Board Can 32:1234–1252

    Google Scholar 

  • Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall DJ (eds) Fish physiology. Academic, Toronto, pp 275–343

    Google Scholar 

  • Kennedy D (1957) A comparative study of spectral sensitivity in tadpoles and adult frogs. J Cell Comp Physiol 50:155–165

    Article  CAS  Google Scholar 

  • Legendre L, Dutilleul P (1992) Introduction to the analysis of periodic phenomena. In: Ali MA (eds) Rhythms in fishes. Plenum Press, New York, pp 11–25

    Google Scholar 

  • Lewis PR (1955) A theoretical interpretation of spectral sensitivity curves at long wavelengths. J Physiol 130:45–52

    PubMed  CAS  Google Scholar 

  • Liebman PA, Entine G (1968) Visual pigments of frog and tadpole (Rana pipiens). Vision Res 8:761–775

    Article  PubMed  CAS  Google Scholar 

  • Loew ER, Dartnall HJA (1976) Vitamin A1/A2-based visual pigment mixtures in cones of the rudd. Vision Res 16:891–896

    Article  PubMed  CAS  Google Scholar 

  • Lythgoe JN (1979) The Ecology of vision. Clarendon Press, Oxford

    Google Scholar 

  • Makino M, Nagai K, Suzuki T (1983) Seasonal variation of the vitamin A2-based visual pigment in the retina of adult bullfrog, Rana catesbeiana. Vision Res 23:199–204

    Article  PubMed  CAS  Google Scholar 

  • McBride JR, Higgs DA, Fagerlund UHM, Buckley JT (1982) Thyroid hormones and steroid hormones: potential for control of growth and smoltification of salmonids. Aquaculture 28:201–210

    Article  CAS  Google Scholar 

  • McFarland WN, Allen DM (1977) The effect of extrinsic factors on two distinctive rhodopsin–porphyropsin systems. Can J Zool 55:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Meissl H, Brandstatter R (1992) Photoreceptive functions of the teleast pineal organ and their implications in biological rhythms. In: Ali MA (ed) Rhythms in fishes. Plenum Press, New York, pp 235–254

    Google Scholar 

  • Muntz WRA, Mouat GS (1984) Annual variations in the visual pigments of brown trout inhabiting lochs providing different light environments. Vision Res 24:1575–1580

    Article  PubMed  CAS  Google Scholar 

  • Muntz WRA, Northmore DP (1971) Visual pigments from different parts of the retina in rudd and trout. Vision Res 11:551–561

    Article  PubMed  CAS  Google Scholar 

  • Muntz WR, Reuter T (1966) Visual pigments and spectral sensitivity in Rana temporaria and other European tadpoles. Vision Res 6:601–618

    Article  PubMed  CAS  Google Scholar 

  • Munz FW, Beatty DD (1965) A critical analysis of the visual pigments of salmon and trout. Vision Res 5:1–17

    Article  PubMed  CAS  Google Scholar 

  • Munz FW, Swanson RT (1965) Thyroxine-induced changes in the proportions of visual pigments. Am Zool 5:583

    Google Scholar 

  • Novales Flamarique I (2005) Temporal shifts in visual pigment absorbance in the retina of Pacific salmon. J Comp Physiol A 191:37–49

    Article  CAS  Google Scholar 

  • Novales-Flamarique I, Hawryshyn CW (1993) Spectral characteristics of salmonid migratory routes from southern Vancouver Island (British Columbia). Can J Fish Aqua Sci 50:1706–1716

    Google Scholar 

  • Ohtsu K, Naito K, Wilt FH (1964) Metabolic basis of visual pigment conversion in metamorphosing Rana catesbeiana. Dev Biol 10:216–232

    Article  PubMed  CAS  Google Scholar 

  • Parry JW, Bowmaker JK (2000) Visual pigment reconstitution in intact goldfish retina using synthetic retinaldehyde isomers. Vision 40:2241–2247

    Article  CAS  Google Scholar 

  • Reuter TE, White RH, Wald G (1971) Rhodopsin and porphyropsin fields in the adult bullfrog retina. J Gen Physiol 58:351–371

    Article  PubMed  CAS  Google Scholar 

  • Rieke F, Baylor DA (2000) Origin and functional impact of dark noise in retinal cones. Neuron 26:181–186

    Article  PubMed  CAS  Google Scholar 

  • Schwanzara SA (1967) The visual pigments of freshwater fishes. Vision Res 7:121–148

    Article  PubMed  CAS  Google Scholar 

  • Sillman AJ, O’Leary CJ, Tarantino CD, Loew ER (1999) The photoreceptors and visual pigments of two species of Acipensiformes, the shovelnose sturgeon (Scaphirhynchus platyorhnchus) and the paddlefish (Polydon spathula). J Comp Physiol A 184:37–47

    Article  Google Scholar 

  • Specker JL, Eales JG, Tagawa M, Tyler WA (2000) Parr–smolt transformation in Atlantic salmon: thyroid hormone deiodination in liver and brain and endocrine correlates of change in rheotactic behavior. Can J Zool 78:696–705

    Article  CAS  Google Scholar 

  • Staley KB, Ewing RD (1992) Purine levels in the skin of juvenile coho salmon (Oncorhynchus kisutch) during parr-smolt transformation and adaptation to seawater. Comp Biochem Physiol B Biochem Mol Biol 101:447–452

    Article  CAS  Google Scholar 

  • Steven DM (1950) Some properties of the photoreceptors on the brook lamprey. J Exp Biol 27:350

    PubMed  CAS  Google Scholar 

  • Stiles WS (1948) The physical interpretation of the spectral sensitivity curve of the eye. Transactions of the optical convention of the worshipful company of spectacle makers. Spectacle Makers’ Co., London, pp 97–107

    Google Scholar 

  • Suzuki T, Arikawa K, Eguchi E (1985) The effects of light and temperature on the rhodopsin–porphyropsin visual system of the crayfish, Procambarus clarkii. Zool Sci 2:455–461

    CAS  Google Scholar 

  • Tsin AT, Beatty DD (1977) Visual pigment changes in rainbow trout in response to temperature. Science 195:1358–1360

    Article  PubMed  CAS  Google Scholar 

  • Tsin AT, Beatty DD (1978) Goldfish rhodopsin: P499. Vision Res 18:1453–1455

    Article  PubMed  CAS  Google Scholar 

  • Tsin ATC, Beatty DD (1979) Scotopic visual pigment composition in the retina and vitamins A in the pigment epithelium of the goldfish. Exp Eye Res 29:15–26

    Article  PubMed  CAS  Google Scholar 

  • Tsin AT, Liebman PA, Beatty DD, Drzymala R (1981) Rod and cone visual pigments in the goldfish. Vision Res 21:943–946

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Ohba H, Yamazaki Y, Tokunaga F, Hariyama t (2005) Seasonal variation of chromophore composition in the eye of the Japanese dace, Tribolodon hakonensis. J Comp Physiol A (in press)

  • Wagenmakers EJ, Farrell S (2004) AIC model selection using Akaike weights Psychon. Bull Rev 11:192–196

    Google Scholar 

  • Wald G (1946) The metamorphosis of visual systems in amphibia. Biol Bull 91:239–240

    Google Scholar 

  • Wald G (1957) The metamorphosis of the visual system in the sea lamprey. J Gen Physiol 40:331–336

    Google Scholar 

  • Wald G (1960) The distribution and evolution of visual systems. In: Florkin M, Mason H (eds) Comparative biochemistry. Academic , New York, pp 311–345

    Google Scholar 

  • Wald G, Brown PK (1953) The molar extinction of rhodopsin. J Gen Physiol 37:189–200

    Article  PubMed  CAS  Google Scholar 

  • Whitmore AV, Bowmaker JK (1989) Seasonal variation in cone sensitivity and short-wave absorbing visual pigments in the rudd Scardinius erythrophthalmus. J Comp Physiol A 166:103–116

    Article  Google Scholar 

  • Wilt FH (1959) The differentiation of visual pigments in metamorphosing larvae of Rana catesbeiana. Dev Biol 1:199–233

    Article  CAS  Google Scholar 

  • Wood P, Partridge JC, Grip W (1992) Rod visual pigment changes in the elver of the eel Anguilla anguilla L. measured by microspectrophotometry. J Fish Biol 41:601–611

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Ted Allison, Nicholas Roberts and Ms. Nicola Temple for useful discussions and comments on an earlier version of this manuscript. We are indebted to the staff at Robertson Creek Hatchery, Kispiox River Hatchery and Target Marine Products for providing us with regular samples of fish and assistance with collecting wild coho. We would also like to thank Dr. Ron Tanasichuck and his crew for collecting ocean-going coho in summer, and the crew of the W.E. Ricker for allowing S.T. to join them for collection of ocean-going coho in winter. Funding for this project was provided by NSERC / SSHRC Major Collaborative Research Initiative, Coasts Under Stress grant (P.I. Rosemary Ommer, grant participant CWH), and a NSERC equipment grant to C.W.H. Experimental procedures were in compliance with the “Principles of animal care”, publication No. 86–23, revised 1985 of the National Institute of Health, and the guidelines set out by the Canadian Council for Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Hawryshyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temple, S.E., Plate, E.M., Ramsden, S. et al. Seasonal cycle in vitamin A1/A2-based visual pigment composition during the life history of coho salmon (Oncorhynchus kisutch). J Comp Physiol A 192, 301–313 (2006). https://doi.org/10.1007/s00359-005-0068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0068-3

Keywords

Navigation