Skip to main content

Advertisement

Log in

Diurnal mice (Mus musculus) and other examples of temporal niche switching

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Examples are presented of nocturnal animals becoming diurnal or vice versa as a result of mutations, genetic manipulations, or brain lesions. Understanding these cases could give insight into mechanisms employed when switches of temporal niche occur as part of the life cycle, or in response to circumstances such as availability of food. A two-process account of niche switching is advocated, involving both a change in clock-controlled outputs and a change in the direct response to light (i.e. masking). An emerging theme from this review is the suggestion that retinal inputs have a greater role in switching than suspected previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

EGFr:

Epidermal growth factor receptor

DD:

Constant darkness

LD:

Light-dark

SCN:

Suprachiasmatic nucleus

vSPZ:

Ventral Subparaventricular zone

References

  • Aschoff J (1988) Masking of circadian rhythms by zeitgebers as opposed to entrainment. In: Hekkens WTJM, Kerkhof GA, Rietveld WJ (eds) Trends in chronobiology. Advances in the biosciences, vol 73. Pergamon, Oxford, pp 149–161

  • Biel M, Seeliger M, Pfeifer A, Kohler K, Gerstner A, Ludwig A, Jaissle G, Fauser S, Zrenner E, Hofmann F (1999) Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. Proc Natl Acad Sci USA 96:7553–7557

    Article  PubMed  CAS  Google Scholar 

  • Caldelas I, Poirel V-J, Sicard B, Pévet P, Challet E (2003) Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116:583–591

    Article  PubMed  CAS  Google Scholar 

  • Calvert PD, Krasnoperova NV, Lyubarsky AL, Isayama T, Nicoló M, Kosaras B, Wong G, Gannon KS, Margolskee RF, Sidman RL, Pugh EN, Makino CL, Lem J (2000) Phototransduction in transgenic mice after targeted deletion of the rod transducinα-subunit. PNAS 97:13913–13918

    Article  PubMed  CAS  Google Scholar 

  • Chen RM, Lupski JR, Greenberg F, Lewis RA (1996) Ophthalmic manifestations of Smith-Magenis syndrome. Ophthalmology 103:1084–1091

    PubMed  CAS  Google Scholar 

  • Dardente H, Klosen P, Caldelas I, Pévet P, Masson-Pévet M (2002) Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): comparison with a nocturnal species, the rat. Cell Tissue Res 310:85–92

    Article  PubMed  Google Scholar 

  • De Leersnyder H, Bresson JL, de Blois M-C, Souberbielle J-C, Mogenet A, Delhotal-Landes B, Salefranque F, Munnich A (2003) β1-adrenergic antagonists and melatonin reset the clock and restore sleep in a circadian disorder, Smith-Magenis syndrome. J Med Genet 40:74–78

    Article  PubMed  Google Scholar 

  • Edelstein K, Mrosovsky N (2001) Behavioral responses to light in mice with dorsal lateral geniculate lesions. Brain Res 918:107–112

    Article  PubMed  CAS  Google Scholar 

  • Erkert HG, Gröber J (1986) Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities. Folia Primatol 47:171–188

    Article  PubMed  CAS  Google Scholar 

  • Fidler AE, Gwinner E (2003) Comparative analysis of Avian BMAL1 and CLOCK protein sequences: a search for features associated with owl nocturnal behaviour. Comp Biochem Physiol Part B 136:861–874

    Article  CAS  Google Scholar 

  • Finucane BM, Jaeger ER, Kurtz MB, Weinstein M, Scott CI (1993) Eye abnormalities in the Smith-Magenis contiguous gene deletion syndrome. Am J Med Genet 45:443–446

    Article  PubMed  CAS  Google Scholar 

  • Gooley JJ, Lu J, Fischer D, Saper CB (2003) A broad role for melanopsin in nonvisual photoreception. J Neuroscience 23:7093–7106

    CAS  Google Scholar 

  • Hartong DT, Jorritsma FF, Neve JJ, Melis-Dankers BJM, Kooijman AC (2004) Improved mobility and independence of night-blind people using night-vision goggles. Invest Ophthalmol Vis Sci 45:1725–1731

    Article  PubMed  Google Scholar 

  • Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, Lem J, Biel M, Hofmann F, Foster RG, Yau K-W (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R (2001) The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:1–20

    Article  PubMed  Google Scholar 

  • Jiao Y-Y, Lee TM, Rusak B (1999) Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Brain Res 817:93–103

    Article  PubMed  CAS  Google Scholar 

  • Kas MJH, Edgar DM (1999). A nonphotic stimulus inverts the diurnal-nocturnal phase preference in Octodon degus. J Neurosci 19:328–333

    PubMed  CAS  Google Scholar 

  • Kramer A, Yang F-C, Snodgrass P, Li X, Scammell TE, Davis FC, Weitz CJ (2001) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–2515

    Article  PubMed  CAS  Google Scholar 

  • Laviolette SR, Gallegos RA, Henriksen SJ, van der Kooy D (2004) Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area. Nature Neurosci 7:160–169

    Article  PubMed  CAS  Google Scholar 

  • Lee TM (2004) Growing evidence that some aspects of SCN function differ in nocturnal and diurnal rodents. Am J Physiol Regul Integr Comp Physiol 286:R814–R815

    PubMed  CAS  Google Scholar 

  • Li X, Gilbert J, Davis FC (2005) Disruption of masking by hypothalamic lesions in Syrian hamsters. J Comp Physiol A 191:23–30

    Article  Google Scholar 

  • Lincoln G, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. PNAS on-line: http://www.pnas.org/cgi/content/full/99/21/13890. Accessed August 4, 2004

  • Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau K-W (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299:245–247

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1994) In praise of masking: behavioural responses of retinally degenerate mice to dim light. Chronobiol Int 11:343–348

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (1999) Masking: history, definitions, and measurement. Chronobiol Int 16:415–429

    PubMed  CAS  Google Scholar 

  • Mrosovsky N (2001) Further characterization of the phenotype of mCry1/mCry2-deficient mice. Chronobiol Int 18:613–625

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N (2003) Beyond the suprachiasmatic nucleus. Chronobiol Int 20:1–8

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Hattar S (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20:989–999

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Foster RG, Salmon PA (1999) Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol A 184:423–428

    Article  PubMed  CAS  Google Scholar 

  • Mrosovsky N, Edelstein K, Hastings MH, Maywood ES (2001) Cycle of period gene expression in a diurnal mammal (Spermophilus tridecemlineatus): implications for nonphotic phase shifting. J Biol Rhythms 16:471–478

    Article  PubMed  CAS  Google Scholar 

  • Novak CM, Albers HE (2004) Novel phase-shifting effects of GABAA receptor activation in the suprachiasmatic nucleus of a diurnal rodent. Am J Physiol Regul Integr Comp Physiol 286:R820–R825

    PubMed  CAS  Google Scholar 

  • Oster H, Avivi A, Joel A, Albrecht U, Nevo E (2002) A switch from diurnal to noctural activity in S. ehrenbergi is accompanied by an uncoupling of light input and the circadian clock. Current Biol 12:1919–1922

    Article  CAS  Google Scholar 

  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527

    Article  PubMed  CAS  Google Scholar 

  • Pickard GE, Sollars PJ, Rinchik EM, Nolan PM, Bucan M (1995) Mutagenesis and behavioral screening for altered circadian activity identifies the mouse mutant, Wheels. Brain Res 705:255–266

    Article  PubMed  CAS  Google Scholar 

  • Redlin U, Mrosovsky N (1999) Masking by light in hamsters with SCN lesions. J Comp Physiol A 184:439–448

    Article  PubMed  CAS  Google Scholar 

  • Redlin U, Mrosovsky N (2004) Nocturnal activity in a diurnal rodent (Arvicanthis niloticus): the importance of masking. J Biol Rhythms 19:58–67

    Article  PubMed  Google Scholar 

  • Redlin U, Cooper HM, Mrosovsky N (2003) Increased masking response to light after ablation of the visual cortex in mice. Brain Res 965:1–8

    Article  PubMed  CAS  Google Scholar 

  • Reebs SG (2002) Plasticity of diel and circadian activity rhythms in fishes. Rev Fish Biol Fisheries 12:349–371

    Article  Google Scholar 

  • Richter CP (1978) “Dark-active” rat transformed into “light-active” rat by destruction of 24-hr clock: function of 24-hr clock and synchronizers. Proc Natl Acad Sci USA 75:6276–6280

    Article  PubMed  CAS  Google Scholar 

  • Rieger D, Stanewsky R, Helfrich-Förster C (2003) Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J Biol Rhythms 18:377–391

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Kawamura H (1984) Circadian rhythms in multiple unit activity inside and outside the suprachiasmatic nucleus in the diurnal chipmunk (Eutamias sibiricus). Neurosci Res 1:45–52

    Article  PubMed  CAS  Google Scholar 

  • Schwartz WJ, Reppert SM, Eagan SM, Moore-Ede MC (1983) In vivo metabolic activity of the suprachiasmatic nuclei: a comparative study. Brain Res 274:184–187

    Article  PubMed  CAS  Google Scholar 

  • Selby CP, Thompson C, Schmitz TM, Van Gelder RN, Sancar A (2000) Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. PNAS 97:14697–14702

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Lone SR, Mathew D, Goel A, Chandrashekaran MK (2004) Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus . Chronobiol Int 21:297–308

    Article  PubMed  Google Scholar 

  • Smale L, Lee T, Nunez AA (2003) Mammalian diurnality: some facts and gaps. J Biol Rhythms 18:356–366

    Article  PubMed  Google Scholar 

  • Thompson CL, Selby CP, Van Gelder RN, Blaner WS, Lee J, Quadro L, Lai K, Gottesman ME, Sancar A (2004) Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice. J Biol Rhythms 19:504–517

    Article  PubMed  CAS  Google Scholar 

  • Tomioka K, Chiba Y (1992) Characterization of an optic lobe circadian pacemaker by in situ and in vitro recording of neural activity in the cricket, Gryllus bimaculatus. J Comp Physiol A 171:1–7

    Article  Google Scholar 

  • Van Gelder RN, Gibler TM, Tu D, Embry K, Selby CP, Thompson CL, Sancar A (2002) Pleiotropic effects of cryptochromes 1 and 2 on free-running and light-entrained murine circadian rhythms. J Neurogenetics 16:181–203

    Article  Google Scholar 

  • Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:598–603

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T, Yasuo S, Suzuki Y, Makino E, Yokota Y, Ebihara S (2001) Identification of the suprachiasmatic nucleus in birds. Am J Physiol Regul Integr Comp Physiol 280:R1185–R1189

    PubMed  CAS  Google Scholar 

  • Note added in proof: A recent abstract (Doyle S et al. 2005 IOVS 46: ARVO E-abstract 3989) reports diurnality in mice with defective rod function (Rpe65 −/−) combined with knockout of melanopsin (Opn4 −/−).

Download references

Acknowledgements

We thank P A Salmon for much help, and P L Lakin-Thomas, K Edelstein, J D Levine, R Dallmann and S Thompson for comments. M Radina tested the S129 mice. Experiments were carried out in accordance with the guidelines of the Canadian Council on Animal Care. The work was supported by the Canadian Institutes of Health Research. Mutant mice originally provided for other investigations, came from the laboratory of Dr K-W Yau, supported by the US National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Mrosovsky.

Appendix

Appendix

Explanation of masking terminology used in this review

Masking: a direct acute effect of light on a variable, for example suppression of locomotion in a nocturnal mammal by illumination occurring in the night. Masking of locomotion differs from the phase-shifting effect of light on locomotor rhythms: the latter depends on light resetting an endogenous clock which in turn controls activity. Masking can occur in animals not displaying circadian locomotor rhythms (e.g. after SCN lesions, and in cryptochrome knockout mice).

Negative masking: a decrease in activity, often occurring during relatively bright illumination in a nocturnal species.

Positive masking: an increase in activity, often occurring in mice during periods of dim light against a background of complete darkness.

Paradoxical positive masking: an increase in activity occurring in a nocturnal animal during illumination, or an increase occurring in a diurnal species after a decrease in illumination. Thus, the increase in activity seen in the common mouse during a dim illumination qualifies as paradoxical positive masking because this is a nocturnal species. The term paradoxical does not imply anything abnormal or maladaptive, any more than does the term paradoxical sleep imply pathology.

Paradoxical negative masking: a decrease in activity in a diurnal species when there is an increase in illumination or a decrease in a nocturnal species when there is a decrease in illumination. Again, this is not necessarily maladaptive. For instance, the nocturnal owl monkey (Aotus lemurinus) reduces its activity when it becomes too dark (Erkert and Gröber 1986), presumably a valuable response for an animal that must be able to jump safely from branch to branch.

For further definitions and history of terminology, see Mrosovsky (1999).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrosovsky, N., Hattar, S. Diurnal mice (Mus musculus) and other examples of temporal niche switching. J Comp Physiol A 191, 1011–1024 (2005). https://doi.org/10.1007/s00359-005-0017-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0017-1

Keywords

Navigation