Skip to main content

Advertisement

Log in

Wind spectra and the response of the cercal system in the cockroach

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Experiments on the cercal wind-sensing system of the American cockroach, Periplaneta americana, showed that the firing rate of the interneurons coding wind information depends on the bandwidth of random noise wind stimuli. The firing rate was shown to increase with decreases in the stimulus bandwidth, and be independent of changes in the total power of the stimulus with constant spectral composition. A detailed analysis of ethologically relevant stimulus parameters is presented. A phenomenological model of these relationships and their relevance to wind-mediated cockroach behavior is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A,B
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2D:

two dimensional

FOWD:

fiber-optic wind detector

GI:

giant interneurons

STA:

spike-triggered average

Reference

  • Camhi JM (1983) Neuroethology: nerve cells and the natural behavior of animals. Sinauer, Sunderland, MA

  • Camhi JM, Levy A (1989) The code for stimulus direction in a cell assembly in the cockroach. J Comp Physiol A 165:83–97

    CAS  PubMed  Google Scholar 

  • Camhi JM, Nolen TG (1981) Properties of the escape system of cockroach during walking. J Comp Physiol 142:339–346

    Google Scholar 

  • Clague H, Theunissen F, Miller JP (1997) Effects of adaptation on neural coding by primary sensory interneurons in the cricket cercal system. J Neurophysiol 77:207–220

    CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    CAS  PubMed  Google Scholar 

  • Fraser PJ (1977) Cercal ablation modifies tethered flight behaviour of cockroach. Nature 268:523

    Google Scholar 

  • Frisch UU (1995) Turbulence. Cambridge University Press, Cambridge, UK

  • Gnatzy W, Kamper G (1990) Digger wasp against cricket. 2. An airborne signal produced by a running predator. J Comp Physiol A 167:551–556

    Google Scholar 

  • Homberg U (1994) Flight-correlated activity changes in neurons of the lateral accessory lobes in the brain of the locust Schistocerca gregaria. J Comp Physiol A 175:597–610

    Google Scholar 

  • Kolton L, Camhi JM (1995) Cartesian representation of stimulus direction: parallel processing by two sets of giant interneurons in the cockroach. J Comp Physiol A 176:691–702

    CAS  PubMed  Google Scholar 

  • Kondoh Y, Arima T, Okuma J, Hasegawa Y (1991a) Filter characteristics of cercal afferents in the cockroach. J Comp Physiol A 169:653–662

    CAS  PubMed  Google Scholar 

  • Kondoh Y, Morishita H, Arima T, Okuma J, Hasegawa Y (1991b) White noise analysis of graded response in a wind-sensitive, nonspiking interneuron of the cockroach. J Comp Physiol A 168:429–443

    CAS  PubMed  Google Scholar 

  • Kondoh Y, Arima T, Okuma J, Hasegawa Y (1993) Response dynamics and directional properties of nonspiking local interneurons in the cockroach cercal system. J Neurosci 13:2287–2305

    CAS  PubMed  Google Scholar 

  • Levi R, Camhi J (1996) Producing directed behaviour: muscle activity patterns of the cockroach escape response. J Exp Biol 199:563–568

    PubMed  Google Scholar 

  • Levi R, Camhi JM (2000a) Population vector coding by the giant interneurons of the cockroach. J Neurosci 20:3822–3829

    CAS  PubMed  Google Scholar 

  • Levi R, Camhi JM (2000b) Wind direction coding in the cockroach escape response: winner does not take all. J Neurosci 20:3814–3821

    CAS  PubMed  Google Scholar 

  • Liebenthal E, Uhlmann O, Camhi JM (1994) Critical parameters of the spike trains in a cell assembly: coding of turn direction by the giant interneurons of the cockroach. J Comp Physiol A 174:281–296

    CAS  PubMed  Google Scholar 

  • Plummer MR, Camhi JM (1981) Discrimination of sensory signals from noise in the escape system of the cockroach: the role of wind acceleration. J Comp Physiol A 142:347–357

    Google Scholar 

  • Rieke F, Warland D, Ruyter van Steveninck RR de, Bialek W (1997) Spikes—exploring the neural code. MIT Press, Cambridge, Mass

  • Rinberg D, Davidowitz H (2000) Do cockroaches ‘know’ about fluid dynamics? Nature 405:756

    Article  CAS  PubMed  Google Scholar 

  • Rinberg D, Davidowitz H (2002) A stimulus generating system for studying wind sensation in the American cockroach. J Neurosci Methods 121:1–11

    Article  PubMed  Google Scholar 

  • Rinberg D, Bialek W, Davidowitz H, Tishby N (2003) Spike sorting in the frequency domain with overlap detection. e-print archive, http://arXiv.org/abs/physics/0306056

  • Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP (1996) Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system. J Neurophysiol 75:1345–1364

    CAS  PubMed  Google Scholar 

  • Tritton DJ (1988) Physical fluid dynamics. Oxford University Press

  • Vedenina VY, Rozhkova GI, Panjutin AK, Byzov AL, Kämper G (1998) Frequency-intensity characteristics of cricket cercal interneurons: low-frequency-sensitive units. J Comp Physiol A 183:553–561

    Article  Google Scholar 

  • Vickers NJ (2000) Mechanisms of animal navigation in odor plumes. Biol Bull 198:203–212

    CAS  PubMed  Google Scholar 

  • Volman SF, Camhi JM (1988) The role of afferent activity in behavioral and neuronal plasticity in an insect. J Comp Physiol A 162:781–791

    CAS  Google Scholar 

  • Westin J, Ritzmann RE, Goddard DJ (1988) Wind-activated thoracic interneurons of the cockroach. I. Responses to controlled wind stimulation. J Neurobiol 19:573–588

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

It is our pleasure to acknowledge the many helpful discussions and occasional critique of our work provided by Rob De Ruyter, Tom Adelman, Naama Brenner, Misha Chertkov, and Alan Gelperin at various stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rinberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinberg, D., Davidowitz, H. Wind spectra and the response of the cercal system in the cockroach. J Comp Physiol A 189, 867–876 (2003). https://doi.org/10.1007/s00359-003-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0460-9

Keywords

Navigation