Skip to main content
Log in

Spatiotemporal complexity of the aortic sinus vortex

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calcific aortic valve disease. We characterize the spatiotemporal characteristics of aortic sinus vortex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High-resolution time-resolved (2 kHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water–glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in timescales as revealed using time bin-averaged vectors and corresponding instantaneous streamlines. There exist small timescale vortices and a large timescale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatiotemporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200 Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and timescales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Balachandran K et al (2010) Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol 177(1):49–57

    Article  Google Scholar 

  • Beelen MJ, Neerincx PE, van de Molengraft MJG (2011) Control of an air pressure actuated disposable bioreactor for cultivating heart valves. Mechatronics 21(8):1288–1297

    Article  Google Scholar 

  • Bellofiore A, Donohue EM, Quinlan NJ (2011) Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Exp Fluids 51(1):161–176

    Article  Google Scholar 

  • Chrisohoides A, Sotiropoulos F (2003) Experimental visualization of Lagrangian coherent structures in aperiodic flows. Phys Fluids 15(3):L25–L28

    Article  Google Scholar 

  • Dumont K et al (2002) Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif Organs 26(8):710–714

    Article  Google Scholar 

  • Falahatpisheh A, Kheradvar A (2012) High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: from performance to validation. Eur J Mech B Fluids 35:2–8

    Article  Google Scholar 

  • Fisher CI, Chen J, Merryman WD (2013) Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol 12(1):5–17

    Article  Google Scholar 

  • Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease—pathogenesis, disease progression, and treatment strategies. Circulation 111(24):3316–3326

    Article  Google Scholar 

  • Hjortnaes J, New SEP, Aikawa E (2013) Visualizing novel concepts of cardiovascular calcification. Trends Cardiovasc Med 23(3):71–79

    Article  Google Scholar 

  • Kaminsky R et al (2007) Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry. Artif Organs 31(12):869–879

    Article  Google Scholar 

  • Kilner PJ et al (1993) Helical and retrograde secondary flow patterns in the aortic-arch studied by 3-directional magnetic-resonance velocity mapping. Circulation 88(5):2235–2247

    Article  Google Scholar 

  • Kvitting JPE et al (2004) Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery. J Thorac Cardiovasc Surg 127(6):1602–1607

    Article  Google Scholar 

  • Leo HL et al (2006) Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann Biomed Eng 34(6):936–952

    Article  Google Scholar 

  • Markl M et al (2012) 4D flow MRI. J Magn Reson Imaging 36(5):1015–1036

    Article  Google Scholar 

  • Miller JD, Weiss RM, Heistad DD (2011) Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res 108(11):1392–1412

    Article  Google Scholar 

  • Peacock JA (1990) An invitro study of the onset of turbulence in the sinus of valsalva. Circ Res 67(2):448–460

    Article  Google Scholar 

  • Querzoli G, Fortini S, Cenedese A (2010) Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids 22(4):041901

  • Ruiz P et al (2013) In vitro cardiovascular system emulator (bioreactor) for the simulation of normal and diseased conditions with and without mechanical circulatory support. Artif Organs 37(6):549–560

    Article  Google Scholar 

  • Saikrishnan N et al (2012) In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann Biomed Eng 40(8):1760–1775

    Article  Google Scholar 

  • Strecker C et al (2012) Flow-sensitive 4D MRI of the thoracic aorta: comparison of image quality, quantitative flow, and wall parameters at 1.5 T and 3 T. J Magn Reson Imaging 36(5):1097–1103

    Article  Google Scholar 

  • Sucosky P et al (2009) Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4-and TGF-beta 1-dependent pathway. Arterioscler Thromb Vasc Biol 29(2):254–260

    Article  Google Scholar 

  • Sun L, Rajamannan NM, Sucosky P (2011) Design and validation of a novel bioreactor to subject aortic valve leaflets to side-specific shear stress. Ann Biomed Eng 39(8):2174–2185

    Article  Google Scholar 

  • Sun L, Chandra S, Sucosky P (2012) Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. Plos One 7(10):e48843

  • Toger J et al (2012) Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng 40(12):2652–2662

    Article  Google Scholar 

  • Weiler M et al (2011) Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J Biomech 44(8):1459–1465

    Article  Google Scholar 

  • Weinberg EJ et al (2010) Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc Eng 10(1):5–11

    Article  MathSciNet  Google Scholar 

  • Yap CH, Dasi LP, Yoganathan AP (2010a) Dynamic hemodynamic energy loss in normal and stenosed aortic valves. J Biomech Eng-Trans Asme 132(2):021005

  • Yap CH et al (2010b) Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol 298(2):H395–H405

    Article  MathSciNet  Google Scholar 

  • Yap CH et al (2012) Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol 11(1–2):171–182

    Article  Google Scholar 

  • Yip CYY, Simmons CA (2011) The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol 20(3):177–182

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from National Institutes of Health (NIH) under Award Number R01HL119824, and the American Heart Association under award 11SDG5170011. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors also wish to acknowledge Steve Johnson for his machining help throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 13456 kb)

Supplementary material 2 (MP4 8522 kb)

Supplementary material 3 (MP4 23949 kb)

Supplementary material 4 (MP4 16521 kb)

Supplementary material 5 (MP4 3539 kb)

Supplementary material 6 (MP4 5182 kb)

Supplementary material 7 (MP4 6919 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, B., Dasi, L.P. Spatiotemporal complexity of the aortic sinus vortex. Exp Fluids 55, 1770 (2014). https://doi.org/10.1007/s00348-014-1770-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-014-1770-0

Keywords

Navigation