Skip to main content
Log in

Toward real-time particle tracking using an event-based dynamic vision sensor

  • Letter
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Optically based measurements in high Reynolds number fluid flows often require high-speed imaging techniques. These cameras typically record data internally and thus are limited by the amount of onboard memory available. A novel camera technology for use in particle tracking velocimetry is presented in this paper. This technology consists of a dynamic vision sensor in which pixels operate in parallel, transmitting asynchronous events only when relative changes in intensity of approximately 10% are encountered with a temporal resolution of 1 μs. This results in a recording system whose data storage and bandwidth requirements are about 100 times smaller than a typical high-speed image sensor. Post-processing times of data collected from this sensor also increase to about 10 times faster than real time. We present a proof-of-concept study comparing this novel sensor with a high-speed CMOS camera capable of recording up to 2,000 fps at 1,024 × 1,024 pixels. Comparisons are made in the ability of each system to track dense (ρ >1 g/cm3) particles in a solid–liquid two-phase pipe flow. Reynolds numbers based on the bulk velocity and pipe diameter up to 100,000 are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Adrian R (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  • Cowen EA, Monismith SG (1997) A hybrid digital particle tracking velocimetry technique. Exp Fluids 22:199–211

    Article  Google Scholar 

  • Dalziel S (1992) Decay of rotating turbulence: some particle tracking experiments. Appl Sci Res 49:217–244

    Article  Google Scholar 

  • Delbrück T (2007) Frame-free dynamic digital vision. In: Proceedings of the international symposium on secure-life electronics, advanced electronics for quality life and society. University of Tokyo, Japan, pp 21–26

  • Drazen D, Jensen A (2007) Time-resolved combined PIV/PTV measurements of two-phase turbulent pipe flow. In: Proceedings of the 6th international conference multiphase flow. Leipzig, Germany, July 9–13

  • Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 120dB 15us latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circuits 43:566–576

    Article  Google Scholar 

  • Mordant N, Metz P, Pinton JF, Michel O (2005) Acoustical technique for Lagrangian velocity measurement. Rev Sci Instr 76:025–105

    Article  Google Scholar 

  • Raffel M, Willert CE, Kompenhans J (1998) Particle image velocimetry, a practical guide, 1st edn. Springer, Berlin

    Google Scholar 

  • Sveen JK, Cowen EA (2004) Quantitative imaging techniques and their application to wavy flow. In: Grue J, Liu PLF, Pedersen GK (eds) PIV and water waves. World Scientific, Singapore

    Google Scholar 

  • Tao B, Katz J, Meneveau C (2000) Geometry and scale relationships in high Reynolds number turbulence determined from three-dimensional holographic velocimetry. Phys Fluids 12(5):941–944

    Article  MATH  Google Scholar 

  • Voth G, Satyanarayan K, Bodenschatz E (1998) Lagrangian acceleration measurements at large Reynolds numbers. Phys Fluids 10(9):2268–2280

    Article  Google Scholar 

  • Voth G, La Porta A, Crawford A, Bodenschatz E, Ward C, Alexander J (2001) A silicon strip detector for high resolution particle tracking in turbulence. Rev Sci Instr 72(12):4348–4354

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Research Council of Norway via "Strategic Institute Project ES132014, Droplet Transport Modeling and Generation Enhancement in Hydrocarbon Multiphase Transport". Svein Vesterby provided invaluable help in setting up and maintaining the test apparatus in the Hydrodynamics laboratory at the University of Oslo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Drazen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drazen, D., Lichtsteiner, P., Häfliger, P. et al. Toward real-time particle tracking using an event-based dynamic vision sensor. Exp Fluids 51, 1465–1469 (2011). https://doi.org/10.1007/s00348-011-1207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00348-011-1207-y

Keywords

Navigation