Skip to main content
Log in

Molecular Characterization of Arabidopsis and Brassica juncea Cu/Zn-Superoxide Dismutases Reveals Their Regulation of Shoot Regeneration

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Superoxide dismutases (SODs) are ubiquitous metalloenzymes that catalyze the dismutation of superoxide radicals (O -2 ) to molecular oxygen (O2) and hydrogen peroxide (H2O2). In this study we characterized an Arabidopsis thaliana CuZnSOD (CSD1), a close ortholog of a previously identified Brassica juncea CuZnSOD (MSOD1). CSD1 and other two homologs CSD2 and CSD3 were spatially regulated in Arabidopsis, and CSD1 exhibited distinct expression patterns in response to different stress treatments. To investigate the in vivo function of SOD, transgenic Arabidopsis plants, expressing sense and antisense MSOD1 RNAs, were generated and those with altered SOD activity were selected for further characterization. Although SOD transgenic plants exhibited normal phenotypes, the shoot regeneration response in transgenic explants was significantly affected by the modulated SOD activity and the corresponding H2O2 levels. Transgenic explants with downregulated SOD activity were poorly regenerative, whereas those with upregulated SOD activity were highly regenerative. These results suggest that shoot regeneration in vitro is regulated by the SOD activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arisi AC, Cornic G, Jouanin L, Foyer CH (1998) Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiol 117:565–574

    Article  PubMed  CAS  Google Scholar 

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Slooten L, Vandenbranden S, Rycke RD, Botterman J, Sybesma C, Montagu M, Inzé D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. Eur Mol Biol Org J 10:1723–1732

    CAS  Google Scholar 

  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Ann Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cui K, Xing G, Liu X, Xing G, Wang Y (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum. Plant Sci 146:6–16

    Google Scholar 

  • Hunter DC, Burritt DJ (2005) Light quality influences the polyamine content of lettuce (Lactuca sativa L.) cotyledon explants during shoot production in vitro. Plant Growth Regul 45:53–61

    Article  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Article  PubMed  CAS  Google Scholar 

  • Immonen S, Anttila H (1999) Cold treatment to enhance green plant regeneration from rye anther culture. Plant Cell Tiss Org Cult 57:121–127

    Article  Google Scholar 

  • Immonen S, Robinson J (2000) Stress treatments and ficoll for improving green plant regeneration in triticale anther culture. Plant Sci 150:77–84

    Article  CAS  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Shon YG, Lee SI, Kim CY, Koo JC, Lim CO, Ghoi YJ, Han CD, Chung CH, Choe ZR, Ho MJ (1999) Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration. Physiol Plant 107:338–345

    Article  CAS  Google Scholar 

  • Libik M, Konieczny R, Pater B, Slesak I, Miszalski Z (2005) Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep 23:834–841

    Article  PubMed  CAS  Google Scholar 

  • Lim TS, Thiruvetipuram RC, Han P, Pua EC, Yu H (2006) Cloning and characterization of Arabidopsis and Brassica juncea flavin-containing amine oxidases. J Exp Bot 57:4155–4169

    Article  PubMed  CAS  Google Scholar 

  • Liu JJ, Goh CJ, Loh CS, Tay BH, Pua EC (1998) Cloning of two cDNAs encoding Cu/Zn-superoxide dismutase (accession Nos. X95726 and X95728) of mustard (Brassica juncea [L.] Czern & Coss) (PGR98-018). Plant Physiol 116:867

    Article  Google Scholar 

  • Luo JP, Jiang TJ, Pan LJ (2001) Enhanced somatic embryogenesis by salicylic acid of Astragalus adsurgens Pall: relationship with H2O2 production and H2O2-metabolizing enzyme activities. Plant Sci 161:125–132

    Article  CAS  Google Scholar 

  • Madamanchi NR, Donahue JL, Cramer CL, Alscher RG, Pedersen K (1994) Differential response of Cu,Zn superoxide dismutase in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    PubMed  CAS  Google Scholar 

  • McKersie BD, Chen Y, de Beus M, Bowley SR, Bowler C, Inzé D, D’Halluin K, Botterman J (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol 103:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Cathranthus roseus seedlings. J Plant Physiol 163:11–18

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Monteiro M, Kevers C, Dommes J, Gaspar T (2002) A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell Tiss Org Cult 68:225–232

    Article  CAS  Google Scholar 

  • Mundhara R, Rashid A (2001) Regeneration of shoot-buds on hypocotyls of Linum seedlings: a stress-related response. Plant Sci 161:19–25

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2002) Oxidative stress could be responsible for the recalcitrance of plant protoplasts. Plant Physiol Biochem 40:549–559

    Article  CAS  Google Scholar 

  • Payton P, Allen RD, Trolinder N, Holaday AS (1997) Overexpression of chloroplast-targeted Mn superoxide dismutase in cotton (Gossypium hirsutum L., cv. Coker 312) does not alter the reduction of photosynthesis after short exposures to low temperature and high light intensity. Photosynth Res 52:233–244

    Article  CAS  Google Scholar 

  • Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S, Galun E (1993) Enhanced oxidative stress defence in transgenic potato expressing tomato Cu,Zn superoxide dismutases. Theor Appl Genet 85:568–576

    Article  CAS  Google Scholar 

  • Pitcher LH, Brennan E, Hurley A, Dunsmuir P, Tepperman JM, Zilinskas BA (1991) Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol 37:452–455

    Article  Google Scholar 

  • Posmyk MM, Bailly C, Szafranska K, Janas KM, Corbineau F (2005) Antioxidant enzymes and isoflavanoids in chilled soybean (Glycine max (L.) Merr.) seedlings. J Plant Physiol 162:403–412

    Article  PubMed  CAS  Google Scholar 

  • Pua EC, Gong HB (2004) Regulation of plant morphogenesis in vitro. In: Pua EC, Douglas CJ (eds) Biotechnology in Agriculture and Forestry, vol 54, Brassica. Berlin: Springer-Verlag, pp 83–102

    Google Scholar 

  • Sen Gupta A, Heinen LJ, Holaday AS, Burke JJ, Allen RD (1993a) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A 90:1629–1633

    Article  CAS  Google Scholar 

  • Sen Gupta A, Webb RP, Holaday AS, Allen RD (1993b) Overexpression of superoxide dismutase protects plants from oxidative stress. Plant Physiol 103:1067–1073

    CAS  Google Scholar 

  • Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inzé D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:737–750

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tepperman JM, Duinsmuir P (1990) Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol 14:501–511

    Article  PubMed  CAS  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225–233

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang ZG, Wei YD, Collinge DB (1997) Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Trolinder NL, Allen RD (1994) Expression of chloroplast-localized MnSOD in transgenic cotton. J Cell Biochem 18A:97–101

    Google Scholar 

  • Van Breusegem F, Slooten L, Stassart J, Botterman J, Moens T, Van Montagu M, Inzé D (1999) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 24:71–78

    Article  Google Scholar 

  • Van Camp W, Capiau K, Van Montagu M, Inzé M, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714

    Article  PubMed  Google Scholar 

  • Van Camp W, Willekens H, Bowler C, Van Montagu M, Inzé D, Reupold-Popp P, Sandermann H, Langbarrels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology 12:165–168

    Article  Google Scholar 

  • Verma S, Mishra SN (2005) Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J Plant Physiol 162:669–677

    Article  PubMed  CAS  Google Scholar 

  • Walz C, Juenger M, Schad M, Kehr J (2002) Evidence for the presence and activity of a complete antioxidant defense system in mature sieve tubes. Plant J 31:189–197

    Article  PubMed  CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    Article  PubMed  CAS  Google Scholar 

  • Williamson DJ, Scandalios JG (1993) Plant antioxidant gene responses to fungal pathogens. Trends Microbiol 1:239–245

    Article  PubMed  CAS  Google Scholar 

  • Zhang A, Jiang M, Zhang J, Tan M, Hu X (2006) Mitogen-activated protein kinase in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants. Plant Physiol 141:475–487

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by academic research funds from the National University of Singapore (research grants R-154-000-282-112 and R-154-000-337-112) and intramural research funds from Temasek Life Sciences Laboratory. TSL and BHT were supported by postgraduate scholarships from the National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, T.S., Chitra, T.R., Tay, B.H. et al. Molecular Characterization of Arabidopsis and Brassica juncea Cu/Zn-Superoxide Dismutases Reveals Their Regulation of Shoot Regeneration. J Plant Growth Regul 27, 99–109 (2008). https://doi.org/10.1007/s00344-007-9036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-007-9036-1

Keywords

Navigation