Skip to main content
Log in

Rapid Kinetic Analysis of Ethylene Growth Responses in Seedlings: New Insights into Ethylene Signal Transduction

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Ethylene is a phytohormone that influences diverse processes in plants. Ethylene causes various changes in etiolated seedlings that differ between species and include reduced growth of shoots and roots, increased diameter of shoots, agravitropic growth, initiation of root hairs, and increased curvature of the apical hook. The inhibition of growth in etiolated seedlings has become widely used to screen for and identify mutants. This approach has led to an increased understanding of ethylene signaling. Most studies use end-point analysis after several days of exposure to assess the effects of ethylene. Recently, the use of time-lapse imaging has re-emerged as an experimental method to study the rapid kinetics of ethylene responses. This review outlines the historical use of ethylene growth kinetic studies and summarizes the recent use of this approach coupled with molecular biology to provide new insights into ethylene signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr. 1992. Ethylene in Plant Biology, 2nd ed. San Diego, CA, USA, Academic Press, p 414

    Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker Jr. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

  • Alonso JM, Stepanova AN, Solano R, Wisman E, Ferrari S, et al. 2003. Five components of the ethylene-response pathway identified in a screen of weak ethylene-insensitive mutants in Arabidopsis. Proc Natl Acad Sci USA 100:2992–2997

    Article  PubMed  CAS  Google Scholar 

  • Berg AR, Peacock K. 1991. Growth patterns in nutating and nonnutating sunflower (Helianthus annuus) hypocotyls. Am J Bot 79:77–85

    Article  Google Scholar 

  • Binder BM, Bleecker AB. 2003. A model for ethylene receptor function and 1-methylcyclopropene action. ACTA Hort 628:177–187

    CAS  Google Scholar 

  • Binder BM, Mortimore LA, Stepanova AN, Ecker JR, Bleecker AB. 2004a. Short term growth responses to ethylene in Arabidopsis seedlings are EIN3 /EIL1 independent. Plant Physiol 136:2921–2927

    Article  CAS  Google Scholar 

  • Binder BM, O’Malley RC, Wang W, Moore JM, Parks BM, et al. 2004b. Arabidopsis seedling growth response and recovery to ethylene: a kinetic analysis. Plant Physiol 136:2913–2920

    Article  CAS  Google Scholar 

  • Binder BM, O’Malley RC, Wang W, Zutz TC, Bleecker AB. 2006. Ethylene stimulates mutations that are dependent on the ETR1 receptor. Plant Physiol 142:1690–1700

    Article  PubMed  CAS  Google Scholar 

  • Blankenship SM, Dole JM. 2003. 1-Methylcyclopropene: a review. Postharvest Bio Tech 28:1–25

    Article  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Bray D, Levin MD, Morton-Firth CJ. 1998. Receptor clustering as a cellular mechanism to control sensitivity. Nature 393:85–88

    Article  PubMed  CAS  Google Scholar 

  • Burg SP. 1973. Ethylene in plant growth. Proc Natl Acad Sci USA 70:591–597

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM. 1993. Arabidopsis ethylene-response gene etr1: similarity of product to two-component regulators. Science 262:539–543

    Article  PubMed  CAS  Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, et al. 1997. Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen QC, Bleecker AB. 1995. Analysis of ethylene signal-transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant Arabidopsis. Plant Physiol 108:597–607

    Article  PubMed  CAS  Google Scholar 

  • Darwin C, Darwin F. 1880. The Power of Movement in Plants. London, UK, John Murray, p 592

    Google Scholar 

  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D. 2005. Auxin, ethylene and brassinosteroids: tripartite control of growth in Arabidopsis hypocotyl. Plant Cell Physiol 46:827–836

    Article  PubMed  CAS  Google Scholar 

  • Duke TAJ, Bray D. 1999. Heightened sensitivity of a lattice of membrane receptors. Proc Natl Acad Sci USA 96:10104–0108

    Article  PubMed  CAS  Google Scholar 

  • Eisinger W, Croner LJ, Taiz L. 1983. Ethylene-induced lateral expansion in etiolated pea stems. Plant Physiol 73:407–412

    PubMed  CAS  Google Scholar 

  • Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP. 2003. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Spalding EP. 2001. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Plant J 26:471–478

    Article  PubMed  CAS  Google Scholar 

  • Gagne JM, Smalle J, Gingerich DJ, Walker JM, Yoo S-D, et al. 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc Natl Acad Sci USA 101:6803–6808

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Coonfield ML, Schaller GE. 1998. Histidine kinase activity of the ETR1 ethylene receptor from Arabidopsis. Proc Natl Acad Sci USA 95:7825–7829

    Article  PubMed  CAS  Google Scholar 

  • Gamble RL, Qu X., Schaller GE. 2002. Mutational analysis for the ethylene receptor ETR1. Role of the histidine kinase domain in dominant ethylene insensitivity. Plant Physiol 128:1428–438

    Article  PubMed  CAS  Google Scholar 

  • Gao Z, Chen Y-F, Randlett MD, Zhao X-C, Findell JL, et al. 2003. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725–34732

    Article  PubMed  CAS  Google Scholar 

  • Goeschl JD, Kays SJ. 1975. Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean, and cotton seedlings. Plant Physiol 55:670–677

    PubMed  CAS  Google Scholar 

  • Guo H, Ecker JR. 2003. Plant responses to ethylene gas are mediated by SCFEBF1/EFB2-dependent proteolysis of EIN3 transcription factor. Cell 115:667–677

    Article  PubMed  CAS  Google Scholar 

  • Guzmán P, Ecker JR. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  Google Scholar 

  • Hall AE, Bleecker AB. 2003. Analysis of combinatorial loss-of-function mutants in the Arabidopsis ethylene receptors reveals that the ers1;etr1 double mutant has severe developmental defects that are EIN2 dependent. Plant Cell 15:2032–2041

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB. 1999. The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121:291–299

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Findell JL, Schaller GE, Sisler EC, Bleecker AB. 2000. Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol 123:1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg W. 1958. In Physics and Philosophy, Chapter III. The Copenhagen Interpretation of Quantum Theory. New York, NY, USA, Harper and Brothers. p. 58

    Google Scholar 

  • Hua J, Chang C, Sun Q, Meyerowitz EM. 1995. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science 269:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Meyerowitz EM. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  PubMed  CAS  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, et al. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ. 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221–233

    Article  PubMed  CAS  Google Scholar 

  • Jackson MB. 1983. Regulation of root growth and morphology by ethylene and other externally applied growth substances. In Jackson MB, Stead AD, editors. Growth Regulators in Root Development. Monograph No. 10, British Plant Growth Regulator Group, London, UK, p 103–116

    Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  PubMed  CAS  Google Scholar 

  • Klee H. 2004. Ethylene signal transduction: moving beyond Arabidopsis. Plant Physiol 135:660–667

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Chang C. 2001. The Arabidopsis eer1 mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol 125:1061–1073

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Chang W-K, Evans ML. 1990. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistiumulated roots of Zea mays. Plant Physiol 94:1770–1775

    PubMed  CAS  Google Scholar 

  • Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. 2004. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell 7:193–204

    Article  PubMed  CAS  Google Scholar 

  • Mattoo AK, Suttle JC, eds. 1991. The Plant Hormone Ethylene. Boca Raton, FL, USA, CRC Press, p 337

    Google Scholar 

  • Michener HD. 1938. The action of ethylene on plant growth. Am J Bot 25:711–720

    Article  CAS  Google Scholar 

  • Moussatche P, Klee H. 2004. Autophosphorylation activity of the Arabidopsis ethylene receptor multigene family. J Biol Chem 279:48734–48741

    Article  PubMed  CAS  Google Scholar 

  • Nee M., Chiu L, Eisinger W. 1978. Induction of swelling in pea internode tissue by ethylene. Plant Physiol 62:902–906

    PubMed  CAS  Google Scholar 

  • Neljubov D. 1901. Uber die horizontale Nutation der Stengel von Pisum sativum und einiger Anderer. Pflanzen Beih Bot Zentralb 10:128–139

    Google Scholar 

  • Olmedo G, Guo H, Gregory BD, Nourizadeh SD, Aguilar-Henonin L, et al. 2006. ETHYLENE-INSENSITIVE5 encodes a 5′ → 3′ exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc Natl Acad Sci USA 103:13286–13293

    Article  PubMed  CAS  Google Scholar 

  • O’Malley RC, Rodriguez FI, Esch JJ, Binder BM, O’Donnell P. 2005. Ethylene-binding activity, gene-expression levels, and receptor-system output for ethylene-receptor family members from Arabidopsis and tomato. Plant J 41:651–659

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Cho MH, Spalding EP. 1998. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol 118:609–615

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Spalding EP. 1999. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 96:14142–14146

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Lechner E, Parmentier Y, Yanagisawa S, Grava S, et al. 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F Box proteins: EBF1 and EBF2. Cell 115:679–689

    Article  PubMed  CAS  Google Scholar 

  • Potuschak T, Vansiri A, Binder BM, Lechner E, Vierstra RD, 2006. The exonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell 18:3047–3057

    Article  PubMed  CAS  Google Scholar 

  • Qu X, Schaller GE. 2004. Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1. Plant Physiol 136:2961–2970

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE, Horton RF. 1975. Rapid effects of indoleacetic acid and ethylene on the growth of intact pea roots. Plant Physiol 55:443–447

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, et al. 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  PubMed  CAS  Google Scholar 

  • Sanders IO, Harpham NVJ, Raskin I, Smith AR, Hall MA. 1991. Ethylene binding in wild type and mutant Arabidopsis thaliana (L.) Heynh. Ann Bot 68:97–103

    CAS  Google Scholar 

  • Schaller GE, Bleecker AB. 1995. Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270:1809–1811

    Article  PubMed  CAS  Google Scholar 

  • Shimizu TS, Aksenov SV, Bray D. 2003. A spatially extended stochastic model of the bacterial chemotaxis signaling pathway. J Mol Biol 329:291–309

    Article  PubMed  CAS  Google Scholar 

  • Thomason PA, Wolanin PM, Stock JB. 2002. Signal transduction: receptor clusters as information processing arrays. Curr Biol 12:339–401

    Article  Google Scholar 

  • van der Laan PA. 1934. Der Einfluss von Aethylen auf die Wuchsstoffbildung be avena und Vicia. Rec Trav Bot Neerl 31:691–742

    Google Scholar 

  • Wang W, Hall AE, O’Malley R, Bleecker AB. 2003. Canonical histidine kinase activity of the transmitter domain of the ETR1 ethylene receptor from Arabidopsis is not required for signal transmission. Proc Natl Acad Sci USA 100:352–357

    Article  PubMed  CAS  Google Scholar 

  • Warner HL, Leopold AC. 1971. Timing of growth regulator responses in peas. Biochem Biophys Res Commun 44:989–994

    Article  PubMed  CAS  Google Scholar 

  • West AH, Stock AM. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biol Sci 26:369–376

    Article  CAS  Google Scholar 

  • Yanagisawa S, Yoo S-D, Sheen J. 2003. Differential regulation of EIN3 stability by glucose and ethylene signaling in plants. Nature 425:521–525

    Article  PubMed  CAS  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE. 2002. Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130:1983–1991

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to Kandis Elliot for help with the illustrations. Also, I thank Christopher Day, Ronan O’Malley, Edgar Spalding, and Richard Vierstra for helpful discussions. This review is dedicated to the memory of my friend, mentor, and colleague, Tony Bleecker, and to his mentor Hans Kende, who passed away in September of 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad M. Binder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, B.M. Rapid Kinetic Analysis of Ethylene Growth Responses in Seedlings: New Insights into Ethylene Signal Transduction. J Plant Growth Regul 26, 131–142 (2007). https://doi.org/10.1007/s00344-007-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-007-0004-6

Keywords

Navigation