Skip to main content
Log in

Preliminary genetic linkage map of the abalone Haliotis diversicolor Reeve

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Haliotis diversicolor Reeve is one of the most important mollusks cultured in South China. Preliminary genetic linkage maps were constructed with amplified fragment length polymorphism (AFLP) markers. A total of 2 596 AFLP markers were obtained from 28 primer combinations in two parents and 78 offsprings. Among them, 412 markers (15.9%) were polymorphic and segregated in the mapping family. Chi-square tests showed that 151 (84.4%) markers segregated according to the expected 1:1 Mendelian ratio (P<0.05) in the female parent, and 200 (85.8%) in the male parent. For the female map, 179 markers were used for linkage analysis and 90 markers were assigned to 17 linkage groups with an average interval length of 25.7 cm. For the male map, 233 markers were used and 94 were mapped into 18 linkage groups, with an average interval of 25.0 cm. The estimated genome length was 2 773.0 cm for the female and 2 817.1 cm for the male map. The observed length of the linkage map was 1 875.2 cm and 1 896.5 cm for the female and male maps, respectively. When doublets were considered, the map length increased to 2 152.8 cm for the female and 2 032.7 cm for the male map, corresponding to genome coverage of 77.6% and 72.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baranski M, Loughnan S, Austin C M, Robinson N. 2006. A microsatellite linkage map of the blacklip abalone, Haliotis rubra. Animal Genetics, 37(6): 563–570.

    Article  Google Scholar 

  • Bineli G, Bucci G A. 1994. Genetic linkage map of Picea abies Karst, based on RAPD markers, as a tool in population genetics. Theor. Appl. Genet., 88: 283–288.

    Article  Google Scholar 

  • Botstein D, White R L, Skolnick M M, Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3): 314–331.

    Google Scholar 

  • Causse M A, Fulton T M, Cho Y G, Ahn S N, Chunwongse J, Wu K, Xiao J, Yu Z, Ronald P C, Harrington S E, Second G, McCouch S R, Tanksley S D. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 138(4): 1 251–1 274.

    Google Scholar 

  • Cervera M T, Plomion C, Malpica C. 1999. Molecular markers and genome mapping in woody plants. In: Jain S M, Minocha S C ed. Molecular Biology of Woody Plants. Kluwer Academic, Dordrecht. p. 375–394.

    Google Scholar 

  • Cervera M T, Storme V, Ivens B, Gusm(a)o J, Liu B H, Hostyn V. 2001. Dense genetic linkage maps of three Populus species (Populus deltoides, P. inigra and P. trichocarpa) based on AFLP and microsatellite markers. Genetics, 158(2): 787–809.

    Google Scholar 

  • Chakravarti A, Lasher L K, Reefer J E. 1991. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 128(1): 175–182.

    Google Scholar 

  • Chen C S, Yan Z L, Liu G Z, Liu H, Ji D H. 2003. Karyotypes of diploid and triploid Haliotis diversicolor aquatilis. Journal of Jimei University (Natural Science), 8(4): 291–294.

    Google Scholar 

  • Dietrich W F, Miller J, Steen R, Merchant M A, Damron-Boles D, Husain Z, Dredge R, Daly M J, Ingalls K A, Tara J, O’ConnorEvans C A, DeAngelis M M, David M, LevinsonKruglyak L, Goodman N, Copeland N G, Jenkins N A, Hawkins T L, Stein L, Page D C, Lander E S. 1996. A comprehensive genetic map of the mouse genome. Nature, 380: 149–152.

    Article  Google Scholar 

  • Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith T P, Bowden D W, Smith D R, Lander E S. 1987. A genetic linkage map of the human genome. Cell, 51(2): 319–337.

    Article  Google Scholar 

  • Faris J D, Laddomada B, Gill B S. 1998. Molecular mapping of segregation distortion loci in Aegilops taushii. Genetics, 149: 319–327.

    Google Scholar 

  • Fishman L, Kelly A J, Morgan E, Willis J H. 2001. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics, 159(4): 1 701–1 716.

    Google Scholar 

  • Guo X, Wang Y, Wang L, Lee J H. 2008. Oysters. In: Kocher T D, Kole C ed. Genome Mapping and Genomics in Fishes and Aquatic Animals. Springer, German. p. 161–175.

    Google Scholar 

  • Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto T, Lin S Y, Antonio B A, Parco A, Kajiya H, Huang N, Yamamoto K, Nagamura Y, Kurata N, Khush G S, Sasaki T. 1998. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics, 148(1): 479–494.

    Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M. 2003. Construction of a linkage map and QTL analysis of horticultural traits for watermelon Citrullus lanatus (Thunb) Matsum & Nakai using RAPD, RFLP and ISSR markers. Theor. Appl. Genet, 106: 779–785.

    Google Scholar 

  • Hubert S, Hedgecock D. 2004. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 168(1): 351–362.

    Article  Google Scholar 

  • Kocher T D, Lee W J, Sobolewska H, Penman D, McAndrew B. 1998. A genetic linkage map of a cichlid fish, the tilapia Oreochromis niloticus. Genetics, 148(3): 1 225–1 232.

    Google Scholar 

  • Kosambi D D. 1944. The estimation of map distance from recombination values. Annals of Eugenics, 12: 172–175.

    Google Scholar 

  • Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newberg L A. 1987. MAPMAKER, an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1(2): 174–180.

    Article  Google Scholar 

  • Launey S, Hedgecock D. 2001. High genetic load in the Pacific oyster Crassostrea gigas. Genetics, 159: 255–265.

    Google Scholar 

  • Li L, Guo X. 2004. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Marine Biotechnology, 6(1): 26–36.

    Article  Google Scholar 

  • Li L, Xiang J H, Liu X, Zhang Y, Dong B, Zhang X J. 2005. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245(1–4): 63–73.

    Article  Google Scholar 

  • Liu Z, Furnier G R. 1993. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and betweenTrembling aspen and Bigtooth aspen. Theor. Appl. Genet., 87: 97–105.

    Google Scholar 

  • Liu Z, Nichols A, Li P, Dunham R A. 1998. Inheritance and usefulness of AFLP markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids. Molecular and General Genetics, 258(3): 260–268.

    Article  Google Scholar 

  • Liu X, Liu X, Guo X, Gao Q, Zhao H, Zhang G. 2006. A preliminary genetic linkage map of the Pacific Abalone Haliotis discus hannai Ino. Marine Biotechnology, 8(4): 386–397.

    Article  Google Scholar 

  • Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A, Terado T, Kimura H, Nonaka M, Shima A. 2000. A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics, 154(4): 1 773–1 784.

    Google Scholar 

  • Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, Nagasaka K. 1999. Segregation distortion for AFLP markers in Cryptomeria japonica. Genes and Genetic Systems, 74(2): 55–59.

    Article  Google Scholar 

  • Postlethwait J H, Johnson S L, Midson C N, Talbot W S, Gate M, Ballinger E W, Africa D, Carl T, Eisen J S, Horne S, Kimmel C B, Hutchinson M, Johnson M, Rodriguez A. 1994. A genetic linkage map for the zebrafish. Science, 264: 699–703.

    Article  Google Scholar 

  • Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. 1998. A microsatellite map of wheat. Genetics, 149(4): 2 007–2 023.

    Google Scholar 

  • Taillon-Miller P, Kwok P Y. 2000. A high-density single-nucleotide polymorphism map of Xq25-q28. Genomics, 65(1): 195–202.

    Article  Google Scholar 

  • Tan Y D, Wan C L, Zhu Y F, Lu C, Xiang Z H, Deng H W. 2001. An amplified fragment length polymorphism map of the silkworm. Genetics, 157(3): 1 277–1 284.

    Google Scholar 

  • Voorrips R E. 2002. MapChart: software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1): 77–78.

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23(21): 4 407–4 414.

    Article  Google Scholar 

  • Wada H, Naruse K, Shimada A, Shima A. 1995. Genetic linkage map of a fish, the Japanese medaka Oryziao latipes. Molecular Marine Biology and Biotechnology, 4(3): 269–274.

    Google Scholar 

  • Waldbieser G C, Bosworth B G, Nonneman D J, Wolters W R. 2001. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 158(2): 727–734.

    Google Scholar 

  • Wang L L, Song L S, Chang Y P, Xu W, Ni D J, Guo X. 2005. A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquaculture Research, 36(7): 643–653.

    Article  Google Scholar 

  • Wang S, Bao Z, Pan J, Zhang L L, Yao B, Zhan A B, Bi K, Zhang Q Q. 2004. AFLP linkage map of an intraspecific cross in Chlamys farreri. Journal of Shellfish Research, 23(2): 491–499.

    Google Scholar 

  • Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22): 6 531–6 535.

    Article  Google Scholar 

  • Wilson K, Li Y T, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S. 2002. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 204(3–4): 297–309.

    Article  Google Scholar 

  • Young W P, Wheeler P A, Coryell V H, Keim P, Thorgaard G H. 1998. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 148(2): 839–850.

    Google Scholar 

  • Yu Z, Guo X. 2003. Genetic linkage map of the eastern oyster Crassotrea virginica Gmelin. The Biological Bulletin, 204(3): 327–338.

    Article  Google Scholar 

  • Yu Z, Guo X. 2006. Identification and mapping of disease-resistance QTLs in the Eastern oyster, Crassostrea virginica Gmelin. Aquaculture, 54(1–4): 160–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Wang  (王爱民).

Additional information

Supported by the National Basic Research Program of China (973 Program) (Nos. 2010CB126405 and 2009CB126005), the Key Project for International Science and Technology Cooperation, Ministry of Science and Technology of China (No. 2004DFA07200), the Great Science and Technique Program of Hainan Province (No. 06120), and the Hainan Key Laboratory of Tropical Hydrobiological Technology (No. shkyjj0810)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Y., Guo, X., Gu, Z. et al. Preliminary genetic linkage map of the abalone Haliotis diversicolor Reeve. Chin. J. Ocean. Limnol. 28, 549–557 (2010). https://doi.org/10.1007/s00343-010-9026-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-010-9026-1

Keyword

Navigation