Skip to main content
Log in

Measurement and simulation of atomic motion in nanoscale optical trapping potentials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Atoms trapped in the evanescent field around a nanofiber experience strong coupling to the light guided in the fiber mode. However, due to the intrinsically strong positional dependence of the coupling, thermal motion of the ensemble limits the use of nanofiber trapped atoms for some quantum tasks. We investigate the thermal dynamics of such an ensemble using short light pulses to make a spatially inhomogeneous population transfer between atomic states. As we monitor the wave packet of atoms created by this scheme, we find a damped oscillatory behavior which we attribute to sloshing and dispersion of the atoms. Oscillation frequencies range around \(100\hbox { kHz}\), and motional dephasing between atoms happens on a timescale of \(10\,\upmu \hbox {s}\). Comparison to Monte Carlo simulations of an ensemble of 1000 classical particles yields reasonable agreement for simulated ensemble temperatures between \(25\) and \({40}\,\upmu \hbox {K}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.L. Kien, V.I. Balykin, K. Hakuta, Phys. Rev. A 70, 063403 (2004). https://doi.org/10.1103/PhysRevA.70.063403

    Article  ADS  Google Scholar 

  2. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S.T. Dawkins, A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010). https://doi.org/10.1103/PhysRevLett.104.203603

    Article  ADS  Google Scholar 

  3. C. Lacrôute, K.S. Choi, A. Goban, D.J. Alton, D. Ding, N.P. Stern, H.J. Kimble, New J. Phys. 14, 023056 (2012). https://doi.org/10.1088/1367-2630/14/2/023056

    Article  ADS  Google Scholar 

  4. J.B. Béguin, E.M. Bookjans, S.L. Christensen, H.L. Sørensen, J.H. Müller, E.S. Polzik, J. Appel, Phys. Rev. Lett. 113, 263603 (2014). https://doi.org/10.1103/PhysRevLett.113.263603

    Article  ADS  Google Scholar 

  5. B. Gouraud, D. Maxein, A. Nicolas, O. Morin, J. Laurat, Phys. Rev. Lett. 114, 263603 (2015). https://doi.org/10.1103/PhysRevLett.114.180503

    Article  Google Scholar 

  6. S. Kato, T. Aoki, Phys. Rev. Lett. 115, 180503 (2015). https://doi.org/10.1103/PhysRevLett.115.093603

    Article  Google Scholar 

  7. W. Li, J. Du, V.G. Truong, S. Nic Chormaic, Appl. Phys. Lett. 110, 253102 (2017). https://doi.org/10.1063/1.4986789

    Article  ADS  Google Scholar 

  8. S.K. Ruddell, K.E. Webb, I. Herrera, A.S. Parkins, M.D. Hoogerland, Optica 4(5), 576 (2017). https://doi.org/10.1364/optica.4.000576

    Article  ADS  Google Scholar 

  9. P. Solano, P. Barberis-Blostein, F.K. Fatemi, L.A. Orozco, S.L. Rolston, Nat. Commun. 8, 1857 (2017). https://doi.org/10.1038/s41467-017-01994-3

    Article  ADS  Google Scholar 

  10. F. Le Kien, A. Rauschenbeutel, Phys. Rev. A 93, 013849 (2016). https://doi.org/10.1103/PhysRevA.93.013849

    Article  ADS  Google Scholar 

  11. J.B. Béguin, J.H. Müller, J. Appel, E.S. Polzik, Phys. Rev. X 8, 031010 (2018). https://doi.org/10.1103/PhysRevX.8.031010

    Article  Google Scholar 

  12. S. Kato, N. Német, K. Senga, S. Mizukami, X. Huang, S. Parkins, T. Aoki, Nat. Commun. 10, 1160 (2019). https://doi.org/10.1038/s41467-019-08975-8

    Article  ADS  Google Scholar 

  13. B. Albrecht, Y. Meng, C. Clausen, A. Dareau, P. Schneeweiss, A. Rauschenbeutel, Phys. Rev. A 94, 061401(R) (2016). https://doi.org/10.1103/PhysRevA.94.061401

    Article  ADS  Google Scholar 

  14. C. Østfeldt, J.B.S. Béguin, F.T. Pedersen, E.S. Polzik, J.H. Müller, J. Appel, Opt. Lett. 42(21), 4315 (2017). https://doi.org/10.1364/ol.42.004315

    Article  ADS  Google Scholar 

  15. Y. Meng, A. Dareau, P. Schneeweiss, A. Rauschenbeutel, Phys. Rev. X 8, 031054 (2018). https://doi.org/10.1103/PhysRevX.8.031054

    Article  Google Scholar 

  16. D. Oblak, J. Appel, P.J. Windpassinger, U.B. Hoff, N. Kjærgaard, E.S. Polzik, Eur. Phys. J. D 50(1), 67 (2008). https://doi.org/10.1140/epjd/e2008-00192-1

    Article  ADS  Google Scholar 

  17. H.L. Sørensen, J.B. Béguin, K.W. Kluge, I. Iakoupov, A.S. Sørensen, J.H. Müller, E.S. Polzik, J. Appel, Phys. Rev. Lett. 117, 133604 (2016). https://doi.org/10.1103/PhysRevLett.117.133604

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding via the European Research Council Grant (787520-Quantum-N) and by the Villum Foundation.

Funding

This study was supported by European Research Council (Grant no. 787520-Quantum-N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg H. Müller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markussen, S.B., Appel, J., Østfeldt, C. et al. Measurement and simulation of atomic motion in nanoscale optical trapping potentials. Appl. Phys. B 126, 73 (2020). https://doi.org/10.1007/s00340-020-07424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07424-5

Navigation