Skip to main content
Log in

A Lagrangian interpolation-assisted direct laser absorption spectrum analyzer based on digital signal processor for methane detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A novel Lagrangian interpolation-based direct laser absorption spectroscopy (LI-DLAS) technique was presented to suppress noise in infrared gas detection by incorporating Lagrangian interpolation and nonlinear least-square fitting (NLLSF). An LI-DLAS analyzer was reported for methane (CH4) detection using a 1654 nm distributed feedback (DFB) laser, a compact digital signal processor (DSP), and a multi-pass gas cell (MPGC) with a 16 m optical path length. The performance of the developed LI-DLAS CH4 analyzer was evaluated by means of laboratory experiments. Compared with the traditional DLAS-based sensor without Lagrangian interpolation, the detection sensitivity was improved from 6 ppmv to 2 ppmv, and the detection stability was enhanced as the Allan–Werle deviation was dropped from 1.514 to 0.531 ppmv for a 1 s averaging time. Compared with a DLAS analyzer based on LabVIEW platform, the DSP-based CH4 analyzer shows the merits of compact size and low cost with potential filed-deployable applications in industrial monitoring and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Ren, W.Z. Jiang, F.K. Tittel, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O. Appl. Phys. B Lasers Opt. 117(1), 245–251 (2014)

    Article  ADS  Google Scholar 

  2. C.T. Zheng, W.L. Ye, N.P. Sanchez, C.G. Li, L. Dong, Y.D. Wang, R.J. Griffin, F.K. Tittel, Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy. Sens. Actuat. B Chem. 244, 365–372 (2017)

    Article  Google Scholar 

  3. W.L. Ye, C.G. Li, C.T. Zheng, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, L. Dong, R.J. Griffin, F.K. Tittel, Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser. Opt. Express 24(15), 16973–16985 (2016)

    Article  ADS  Google Scholar 

  4. E.S.F. Berman, M. Fladeland, J. Liem, R. Kolyer, M. Gupta, Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sens. Actuat. B Chem. 169, 128–135 (2012)

    Article  Google Scholar 

  5. W.W. Ding, L.Q. Sun, L.Y. Yi, E.Y. Zhang, ‘Baseline-offset’ scheme for a methane remote sensor based on wavelength modulation spectroscopy. Meas. Sci. Technol. 27(8), 085202 (2016)

    Article  ADS  Google Scholar 

  6. A. Groth, C. Maurer, M. Reiser, M. Kranert, Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry. Biores. Technol. 178, 359–361 (2015)

    Article  Google Scholar 

  7. N.P. Sanchez, C.T. Zheng, W.L. Ye, B. Czader, D.S. Cohan, F.K. Tittel, R.J. Griffin, Exploratory study of atmospheric methane enhancements derived from natural gas use in the Houston urban area. Atmos. Environ. 176, 261–273 (2018)

    Article  ADS  Google Scholar 

  8. M. Dong, C.T. Zheng, S.Z. Miao, Y. Zhang, Q.L. Du, Y.D. Wang, F.K. Tittel, Development and measurements of a mid-infrared multi-gas sensor system for CO, CO2 and CH4 detection. Sensors 17(10), 2221 (2017)

    Article  Google Scholar 

  9. A.R. Brandt, G.A. Heath, E.A. Kort, F. O’Sullivan, G. Petron, S.M. Jordaan, P. Tans, J. Wilcox, A.M. Gopstein, D. Arent, S. Wofsy, N.J. Brown, R. Bradley, G.D. Stucky, D. Eardley, R. Harriss, Energy and environment. Methane leaks from North American natural gas systems. Science 343(6172), 733–735 (2014)

    Article  ADS  Google Scholar 

  10. R.A. Alvarez, S.W. Pacala, J.J. Winebrake, W.L. Chameides, S.P. Hamburg, Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. 109(17), 6435–6440 (2012)

    Article  ADS  Google Scholar 

  11. J. Jiang, G. M. Ma, H. T. Song, C. R. Li, Y. T. Luo, and H. B. Wang, Highly sensitive detection of methane based on tunable diode laser absorption spectrum. IEEE Conf. Int. Instrum. Measur. Technol. 26, 104–108 (2016)

    Google Scholar 

  12. J.S. Li, B.L. Yu, H. Fischer, Wavelet transform based on the optimal wavelet pairs for tunable diode laser absorption spectroscopy signal processing. Appl. Spectrosc. 69(4), 496–506 (2015)

    Article  ADS  Google Scholar 

  13. J.A. Silver, Frequency-modulation absorption spectroscopy for trace species detection: theoretical and experimental comparison among methods. Appl. Opt. 31(6), 707–717 (1992)

    Article  ADS  Google Scholar 

  14. L. Dong, Y.J. Yu, C.G. Li, S. So, F.K. Tittel, Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multi-pass gas cell. Opt. Express 23(15), 19821–19830 (2015)

    Article  ADS  Google Scholar 

  15. H.I. Schiff, D.R. Hastie, G.I. Mackay, T. Iguchi, B.A. Ridley, Tunable diode laser systems for measuring trace gases in tropospheric air. Environ. Sci. Technol. 17(8), 352A–364A (1983)

    ADS  Google Scholar 

  16. Q. X. He, C. T. Zheng, H. F. Liu, Y. D. Wang, and F. K. Tittel, A near-infrared gas sensor system based on tunable laser absorption spectroscopy and its application in CH4/C2H2 detection. Proc. SPIE 10111, 1011135-1–1011135-7 (2017)

    Google Scholar 

  17. B. Li, C.T. Zheng, Q.X. He, W.L. Ye, Y. Zhang, J.Q. Pan, Y.D. Wang, Development and measurement of a near-infrared CH4, detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe. Sens Actuat B Chem 225, 188–198 (2016)

    Article  Google Scholar 

  18. F.A. Blum, K.W. Nill, P.L. Kelley, A.R. Calawa, T.C. Harman, Tunable infrared laser spectroscopy of atmospheric water vapor. Science 177(4050), 694–695 (1972)

    Article  ADS  Google Scholar 

  19. J.S. Li, B.L. Yu, W.X. Zhao, W.D. Chen, A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectrosc. Rev. 49(8), 666–691 (2014)

    Article  ADS  Google Scholar 

  20. J.S. Li, H. Deng, P.F. Li, B.L. Yu, Real-time infrared gas detection based on an adaptive Savitzky-Golay algorithm. Appl. Phys. B Lasers Opt. 120(2), 207–216 (2015)

    Article  ADS  Google Scholar 

  21. F. Zhang, J.X. Hang, S.B. Wang, Time-delay compensation method of FOG based on Lagrange interpolation. J. Chin. Inertial Technol. 25(5), 676–680 (2017)

    Google Scholar 

  22. C.T. Zheng, W.L. Ye, N.P. Sanchez, A.K. Gluszek, A.J. Hudzikowski, C.G. Li, L. Dong, R.J. Griffin, F.K. Tittel, Infrared dual-gas CH4/C2H6 sensor using two continuous-wave interband cascade lasers. IEEE Photon. Technol. Lett. 28(21), 2351–2354 (2016)

    Article  ADS  Google Scholar 

  23. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Muller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The Hitran 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  24. The HITRAN Database. https://www.cfa.harvard.edu/hitran/. Accessed 6 Aug 2018

  25. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases (Springer, Berlin, 2016)

    Book  Google Scholar 

  26. C. Claveau, A. Henry, D. Hurtmans, A. Valentin, Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm−1. J. Quant. Spectrosc. Radiat. Transfer 68(3), 273–298 (2001)

    Article  ADS  Google Scholar 

  27. A. Valentin, Ch. Claveau, A.D. Bykov, N.N. Lavrentieva, V.N. Saveliev, L.N. Sinitsa, The water-vapor ν2 band lineshift coefficients induced by nitrogen pressure. J. Mol. Spectrosc. 198(2), 218–229 (1999)

    Article  ADS  Google Scholar 

  28. D.E. Heard, Analytical techniques for atmospheric measurement (Blackwell Publishing, Oxford, 2006)

    Book  Google Scholar 

  29. G.C. Xiong, Adaptive Filter. Geophys. Geochem. Explor. 22(2), 147–153 (2000)

    Google Scholar 

Download references

Acknowledgements

The National Key R&D Program of China (No. 2017YFB0405300), National Natural Science Foundation of China (Nos. 61775079, 61627823), Science and Technology Development Program of Jilin Province, China (Nos. 20180201046GX, 20190101016JH), Industrial Innovation Program of Jilin Province, China (No. 2017C027), and the National Science Foundation (NSF) ERC MIRTHE award and Robert Welch Foundation (No. C0586) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weilin Ye or Chuantao Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Zhou, Y., Song, F. et al. A Lagrangian interpolation-assisted direct laser absorption spectrum analyzer based on digital signal processor for methane detection. Appl. Phys. B 125, 76 (2019). https://doi.org/10.1007/s00340-019-7184-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7184-1

Navigation