Skip to main content
Log in

High-temperature argon broadening of CO2 near 2190 cm−1 in a shock tube

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Scanned-wavelength laser absorption measurements of CO2 diluted in Ar were performed behind reflected shock waves at high temperatures (1158–2017 K) and low pressures (5.1–108.4 kPa). High-resolution (0.001 cm−1) scans were conducted in 0.4-cm−1 increments from about 2188.8 to 2191.8 cm−1 at a scan rate of 2 kHz. The HITRAN 2004, HITRAN 2012, and CDSD-296 databases were all found to underestimate the absorption, typically by an order of magnitude or more. The HITEMP database, however, closely predicted the measured data. For the assumed form \(\gamma_{{{\text{CO}}_{ 2} - {\text{Ar}}}} (T) = \gamma_{{{\text{CO}}_{ 2} - {\text{Ar}}}} (T_{0} )(T_{0} /T)^{n}\) with \(T_{0}\) = 296 K, an optimization routine was implemented to determine the values of \(\gamma_{{{\text{CO}}_{ 2} - {\text{Ar}}}} (T_{0} )\) and \(n\). From the optimization, values of 0.033 ± 0.004 cm−1 atm.−1 and 0.61 ± 0.04 were determined for \(\gamma_{{{\text{CO}}_{ 2} - {\text{Ar}}}} (T_{0} )\) and \(n\), respectively, which are in good agreement with historical values. These values describe an average CO2–Ar broadening coefficient in the frequency range studied herein and are reliable within the experimental temperature range. In addition, a set of fixed-wavelength measurements at 2190.0175 cm−1 were carried out at 122, 446, and 1115 kPa between 1100 and 2100 K, and the HITEMP predictions incorporating the proposed Ar-broadening parameters showed excellent agreement with these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown et al., JQSRT 96, 139 (2005)

    Article  ADS  Google Scholar 

  2. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath et al., JQSRT 130, 4 (2013)

    Article  ADS  Google Scholar 

  3. S.A. Tashkun, V.I. Perevalov, R.R. Gamache, J. Lamouroux, JQSRT 152, 45 (2015)

    Article  ADS  Google Scholar 

  4. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov, N.N. Lavrentieva, JQSRT 82, 165 (2003)

    Article  ADS  Google Scholar 

  5. S.A. Tashkun, V.I. Perevalov, JQSRT 112, 1403 (2011)

    Article  ADS  Google Scholar 

  6. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman et al., JQSRT 111, 2139 (2010)

    Article  ADS  Google Scholar 

  7. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132 (2017)

    Article  Google Scholar 

  8. E.L. Petersen, R.K. Hanson, Shock Waves 15, 333 (2006)

    Article  ADS  Google Scholar 

  9. O. Mathieu, C.R. Mulvihill, E.L. Petersen, Y. Zhang, H.J. Curran, J. Eng. Gas Turbines Power 139(12), 121507-1–121507-8 (2017)

    Article  Google Scholar 

  10. W. Ren, A. Farooq, D.F. Davidson, R.K. Hanson, Appl. Phys. B 107, 849 (2012)

    Article  ADS  Google Scholar 

  11. C. Boulet, P. Isnard, E. Arié, JQSRT 14, 637 (1974)

    Article  ADS  Google Scholar 

  12. F. Thibault, J. Boissoles, R. Le Doucen, J.P. Bouanich, P. Arcas, C. Boulet, J. Chem. Phys. 96, 4945 (1992)

    Article  ADS  Google Scholar 

  13. R.A. Brownsword, J.S. Salh, I.W.M. Smith, J. Chem. Soc. Faraday Trans. 91, 191 (1995)

    Article  Google Scholar 

  14. B. Khalil, F. Thibault, J. Boissoles, Chem. Phys. Lett. 284, 230 (1998)

    Article  ADS  Google Scholar 

  15. D.C. Benner, C.E. Miller, V.M. Devi, Can. J. Phys. 87, 499 (2009)

    Article  ADS  Google Scholar 

  16. J. Buldyreva, M. Chrysos, J. Chem. Phys. 115, 7436 (2001)

    Article  ADS  Google Scholar 

  17. E. Arié, N. Lacome, P. Arcas, A. Levy, Appl. Opt. 25, 2584 (1986)

    Article  ADS  Google Scholar 

  18. F. Thibault, B. Calil, J. Buldyreva, M. Chrysos, J.M. Hartmann, J.P. Bouanich, Phys. Chem. Chem. Phys. 3, 3924 (2001)

    Article  Google Scholar 

  19. F. Rachet, M. Margottin-Maclou, A. Henry, A. Valentin, J. Mol. Spectrosc. 175, 315 (1996)

    Article  ADS  Google Scholar 

  20. R.T. Pack, J. Chem. Phys. 70, 3424 (1979)

    Article  ADS  Google Scholar 

  21. M.S. Wooldridge, R.K. Hanson, C.T. Bowman, JQSRT 57, 425 (1997)

    Article  ADS  Google Scholar 

  22. R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116, 855 (2014)

    Article  ADS  Google Scholar 

  23. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90, 619 (2008)

    Article  ADS  Google Scholar 

  24. E.L. Petersen, M.J. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, Meas. Sci. Technol. 16, 1716 (2005)

    Article  ADS  Google Scholar 

  25. W.K. Metcalfe, S.M. Burke, S.S. Ahmed, H.J. Curran, Int. J. Chem. Kinet. 45, 638 (2013)

    Article  Google Scholar 

  26. V.V. Nevdakh, L.N. Orlov, N.S. Leshenyuk, J. Appl. Spectrosc. 70, 276 (2003)

    Article  Google Scholar 

  27. C.J.S.M. Simpson, T.R.D. Chandler, A.C. Strawson, J. Chem. Phys. 51, 2214 (1969)

    Article  ADS  Google Scholar 

  28. J.W. Hargis, E.L. Petersen, AIAA J. 55, 902 (2017)

    Article  ADS  Google Scholar 

  29. L. Rosenmann, J.M. Hartmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3902 (1988)

    Article  ADS  Google Scholar 

  30. A.L. Laraia, R.R. Gamache, J. Lamouroux, I.E. Gordon, L.S. Rothman, Icarus 215, 391 (2011)

    Article  ADS  Google Scholar 

  31. Y.Y. Liu, J.L. Lin, G.M. Huang, Y.Q. Guo, C.X. Duan, J. Opt. Soc. Am. B 18, 666 (2001)

    Article  ADS  Google Scholar 

  32. A. Farooq, J.B. Jeffries, R.K. Hanson, JQSRT 111, 949 (2010)

    Article  ADS  Google Scholar 

  33. J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra (Elsevier, Amsterdam, 2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the NSF for funding this work (Grant DGE-1252521) and also Sulaiman Al Turaifi for his help in performing some of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Mulvihill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulvihill, C.R., Petersen, E.L. High-temperature argon broadening of CO2 near 2190 cm−1 in a shock tube. Appl. Phys. B 123, 255 (2017). https://doi.org/10.1007/s00340-017-6830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6830-8

Navigation