Skip to main content
Log in

Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry–Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8–1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.R. Lin, Y.C. Chang, J.R. Wu, IEEE Photonics Technol. Lett. 16, 1810–1812 (2004)

    Article  ADS  Google Scholar 

  2. G.R. Lin, I.H. Chiu, Opt. Express 13, 8772–8780 (2005)

    Article  ADS  Google Scholar 

  3. H. Feng, W. Zhao, S. Yan, X.P. Xie, Laser Phys. 21, 404–409 (2011)

    Article  ADS  Google Scholar 

  4. S.P. Li, K.T. Chan, Appl. Phys. Lett. 74, 2737–2739 (1999)

    Article  ADS  Google Scholar 

  5. H.C. Ooi, H. Ahmad, A.H. Sulaiman, K. Thambiratnam, S.W. Harun, Laser Phys. 18, 1349–1352 (2008)

    Article  ADS  Google Scholar 

  6. M. Nakazawa, J. Opt. Fiber Commun. Rep. 2, 462–496 (2005)

    Article  Google Scholar 

  7. S.Y. Yan, J.G. Zhang, W. Zhao, H.Q. Lu, W.Q. Wang, Chin. Phys. Lett. 25, 2876–2879 (2008)

    Article  ADS  Google Scholar 

  8. G.E. Villanueva, M. Ferri, P. Perez-Millan, IEEE J. Quantum Electron. 48, 1443–1452 (2012)

    Article  ADS  Google Scholar 

  9. K. Yvind, D. Larsson, L.J. Christiansen, C. Angelo, L.K. Oxenløwe, J. Mørk, D. Birkedal, J.M. Hvam, J. Hanberg, IEEE Photonics Technol. Lett. 16, 975–977 (2004)

    Article  ADS  Google Scholar 

  10. N. Onodera, A.J. Lowery, L. Zhai, Z. Ahmed, R.S. Tucker, Appl. Phys. Lett. 62, 1329–1331 (1993)

    Article  ADS  Google Scholar 

  11. L.Z. Duan, M. Dagenais, J. Goldhar, J. Lightwave Technol. 21, 930–937 (2003)

    Article  ADS  Google Scholar 

  12. M.M. Tao, J.J. Wu, J.S. Peng, Y. Wu, P.L. Yang, X.S. Ye, Laser Phys. 23, 085102 (2013)

    Article  ADS  Google Scholar 

  13. E.S. Boncristiano, L.A.M. Saito, E.A. De Souza, Microw. Opt. Technol. Lett. 50, 2994–2996 (2008)

    Article  Google Scholar 

  14. C.M. Wu, N.K. Dutta, IEEE J. Quantum Electron. 36, 145–150 (2000)

    Article  ADS  Google Scholar 

  15. K. Zoiros, K. Vlachos, T. Stathopoulos, C. Bintjas, H. Avramopoulos, in Optical Fiber Communication Conference (2000), pp. 254–256

  16. G.R. Lin, Y.S. Liao, Opt. Express 12, 2017–2026 (2004)

    Article  ADS  Google Scholar 

  17. G.R. Lin, I.H. Chiu, M.C. Wu, Opt. Express 13, 1008–1014 (2005)

    Article  ADS  Google Scholar 

  18. S.Y. Yan, J.G. Zhang, W. Zhao, Opt. Commun. 283, 87–92 (2010)

    Article  ADS  Google Scholar 

  19. A. Bekal, K. Vijayan, B. Srinivasan, in 2012 International Conference on IEEE Fiber Optics and Photonics, vol. 180 (2012), pp. 1–3

  20. R. Tao, X.L. Wang, P. Zhou, L. Si, Z.J. Liu, Appl. Phys. B 116, 115–119 (2014)

    Article  ADS  Google Scholar 

  21. W. Tang, M. Fok, C. Shu, Opt. Express 14, 2158–2163 (2006)

    Article  ADS  Google Scholar 

  22. J.M. Roth, T.G. Ulmer, N.W. Spellmeyer, S. Constantine, M.E. Grein, IEEE Photonics Technol. Lett. 16, 2009–2011 (2004)

    Article  ADS  Google Scholar 

  23. A. Bergonzo, E. Gohin, J. Landreau, O. Durand, R. Brenot, G.H. Duan, J. Jacquet, IEEE J. Sel. Top. Quantum Electron. 9, 1118–1123 (2003)

    Article  Google Scholar 

  24. D.N. Wang, X. Fang, IEEE Photonics Technol. Lett. 15, 123–125 (2003)

    Article  ADS  Google Scholar 

  25. L. Schares, R. Paschotta, L. Occhi, G. Guekos, J. Lightwave Technol. 22, 859 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51275373), National High Technology Research and Development Program of China (Grant No. 2015AA0433505) and the Key Project of National Natural Science Foundation of Hubei Provincial Government (No. 2014CFA056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglin Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Tong, X., Wang, Z. et al. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier. Appl. Phys. B 121, 517–521 (2015). https://doi.org/10.1007/s00340-015-6263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6263-1

Keywords

Navigation