Skip to main content
Log in

Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Kerr self-focusing of high-power ultrashort laser pulses in atmosphere may result in a structure or structures of high intensity that can propagate over long distances with little divergence. Filamentation has garnered significant interest in the nonlinear optics community due to its unique properties. Salient features of filaments include a central region of intense laser power (greater than the ionization threshold of the propagation medium) and a low temperature plasma column that lasts up to nanoseconds in duration after the passage of the laser pulse. Steel and titanium samples are ablated by filaments and by sharply focused sub-picosecond laser pulses. We then performed metrology on the samples to compare the ablation features in addition to modeling of the plasma ablation process. Ablation with filaments leads to a wider range of material responses as compared to ablation with sharply focused pulse. This results in potential complications for applications of filament ablation that depends on the rate of material removal and spectroscopic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  2. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P.Wolf , Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  3. V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Quant. Elec. 39, 205 (2009)

    Article  ADS  Google Scholar 

  4. B. La Fontaine, F. Vidal, Z. Jiang, C.Y. Chien, D. Comtois, A. Desparois, T.W. Johnston, J.-C. Kieffer, H. Pépin, H.P. Mercure, Phys. Plasmas 6, 1615 (1999)

    Article  ADS  Google Scholar 

  5. A. Ting, I. Alexeev, D. Gordon, R. Fischer, D. Kaganovich, T. Jones, E. Briscoe, J. Peñano, R. Hubbard, P. Sprangle, Phys. Plasmas 12, 056705 (2005)

    Article  ADS  Google Scholar 

  6. H. Yang, Y. Li, J. Zhang, Y. Li, Z. Chen, H. Teng, Z. Wei, Z. Sheng, Phys. Rev. E 66, 016406 (2002)

    Article  ADS  Google Scholar 

  7. W. Liu, f. Théberge, E. Arévalo, J.-F. Gravel, A. Becker, S.L. Chin, Opt. Lett. 30, 2602 (2005)

    Article  ADS  Google Scholar 

  8. S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, Opt. Commun. 181, 123 (2000)

    Article  ADS  Google Scholar 

  9. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Tech. 46, 88 (2013)

    Article  ADS  Google Scholar 

  10. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  11. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B 65, 092103 (2002)

    Article  ADS  Google Scholar 

  12. J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005)

    Article  Google Scholar 

  13. D. Kiselev, L. Woeste, J.-P. Wolf, Appl. Phys. B 100, 515 (2010)

    Article  ADS  Google Scholar 

  14. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, M. Richardson, Appl. Phys. Lett. 101, 034101 (2012)

    Article  ADS  Google Scholar 

  15. M.R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, J.B. Spicer, Sensors 10, 4342 (2010)

    Article  Google Scholar 

  16. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)

    Article  ADS  Google Scholar 

  17. Ph. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J, Yu, J.-P. Wolf, Spectrochim. Acta B 60, 1025 (2005)

    Article  ADS  Google Scholar 

  18. S. Tzortzakis, D. Anglos, D. Gray, Opt. Lett. 31, 1139 (2006)

    Article  ADS  Google Scholar 

  19. B. Zeng, T.-J. Wang, S. Hosseini, Y. Cheng, Z. Xu, W. Liu, S.L. Chin, J. Opt. Soc. Am. B 29, 3226 (2012)

    Article  ADS  Google Scholar 

  20. D. R. Lide, editor: CRC Handbook of Chemistry and Physics. (CRC Press, Boca Raton 1996)

  21. J. A. Dean, Editor: Lange’s Handbook of Chemsitry. (McGraw-Hill, New York, NY 1999)

  22. S. Juodkazis, H. Okuno, N. Kujime, S. Matsuo, H. Misawa, Appl. Phys. A 79, 1555 (2004)

    ADS  Google Scholar 

  23. M.A. Ordal, J. Bell Robert, Jr. R.W. Alexander, L.L. Long, M.R. Querry, Appl. Opt. 24, 4493 (1985)

    Article  ADS  Google Scholar 

  24. A.A. Ionin, S.I. Kudryashov, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, J. Euro. Theo. Phys. Lett. 90, 423 (2009)

    Article  Google Scholar 

  25. G. Fibich, S. Eisenmann, B. Ilan, A. Zigler, Opt. Lett. 29, 1772 (2004)

    Article  ADS  Google Scholar 

  26. Kiran P. Prem, S. Bagchi, S.R. Krishnan, C.L. Arnold, G.R. Kumar, A. Couairon, Phys. Rev. A 82, 013805 (2010)

    Article  ADS  Google Scholar 

  27. W. Liu, S.L. Chin, Opt. Express 13, 5750 (2005)

    Article  ADS  Google Scholar 

  28. A.A. Ionin, S.I. Kudryashov, S.I. Kudryashov, S.V. Makarov, L.V. Seleznev, D.V. Sinitsyn, E.V. Golosov, O.A. Golosova, Y.R. Kolobov, A.E. Ligachev, Appl. Phys. A 107, 301 (2012)

    Article  ADS  Google Scholar 

  29. H. Tao, J. Lin, Z. Hao, X. Gao, X. Song, C. Sun, X. Tan, Appl. Phys. Lett. 100, 201111 (2012)

    Article  ADS  Google Scholar 

  30. A. J. Porwitzky, An End-To-End Model of an Electrothermal Chemical Gun. PhD thesis, University of Michigan Department of Aerospace Engineering (2008)

  31. S.I. Anisimov, J. Sov. Phys. JETP 27, 182 (1968)

    ADS  Google Scholar 

  32. A.J. Porwitzky, M. Keidar, I.D. Boyd, IEEE Trans. Mag. 43, 313 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the assistance at the U.S. Army Research Laboratory from Jeffrey Ball; Robert Borys, Jr.; Frank De Lucia, Jr.; Jennifer Gottfried; Gregory Gentle; and David MacKenzie. The authors also express their gratitude to Casey Boutwell, Ming Wei, and Matthieu Baudelet at the University of Central Florida. The authors also would like to acknowledge funding from the U.S. Army Research Laboratory and research at the University of Central Florida is funded under the JTO/AFOSR MRI on “Fundamentals of Filament Interaction” number FA95501110001 and The State of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Valenzuela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenzuela, A., Munson, C., Porwitzky, A. et al. Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys. Appl. Phys. B 116, 485–491 (2014). https://doi.org/10.1007/s00340-013-5724-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5724-7

Keywords

Navigation