Skip to main content
Log in

\(\mathrm{CO}_{2}^{*}\) chemiluminescence study at low and elevated pressures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Chemiluminescence experiments have been performed to assess the state of current \(\mathrm{CO}_{2}^{*}\) kinetics modeling. The difficulty with modeling \(\mathrm{CO}_{2}^{*}\) lies in its broad emission spectrum, making it a challenge to isolate it from background emission of species such as CH and CH2O. Experiments were performed in a mixture of 0.0005H2+0.01N2O+0.03CO+0.9595Ar in an attempt to isolate \(\mathrm{CO}_{2}^{*}\) emission. Temperatures ranged from 1654 K to 2221 K at two average pressures, 1.4 and 10.4 atm. The unique time histories of the various chemiluminescence species in the unconventional mixture employed at these conditions allow for easy identification of the \(\mathrm{CO}_{2}^{*}\) concentration. Two different wavelengths to capture \(\mathrm{CO}_{2}^{*}\) were used; one optical filter was centered at 415 nm and the other at 458 nm. The use of these two different wavelengths was done to verify that broadband \(\mathrm{CO}_{2}^{*}\) was in fact being captured, and not emission from other species such as CH and CH2O. As a baseline for time history and peak magnitude comparison, OH emission was captured at 307 nm simultaneously with the two \(\mathrm{CO}_{2}^{*}\) filters. The results from the two \(\mathrm{CO}_{2}^{*}\) filters were consistent with each other, implying that indeed the same species (i.e., \(\mathrm{CO}_{2}^{*}\)) was being measured at both wavelengths. A first-generation kinetics model for \(\mathrm{CO}_{2}^{*}\) and CH2O was developed, since no comprehensively validated one exists to date. CH2O and CH were ruled out as being present in the experiments at any measurable level, based on calculations and comparisons with the data. Agreement with the \(\mathrm{CO}_{2}^{*}\) model was only fair, which necessitates future improvements for a better understanding of \(\mathrm{CO}_{2}^{*}\) chemiluminescence as well as the kinetics of the ground state species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.L. Petersen, M.M. Kopp, N.S. Donato, F. Güthe, J. Eng. Gas Turbines Power 134, 051501 (2012)

    Article  Google Scholar 

  2. M. Lauer, T. Sattelmayer, J. Eng. Gas Turbines Power 132, 061502 (2010)

    Article  Google Scholar 

  3. E. Mancaruso, B.M. Vaglieco, Fuel 90, 511 (2011)

    Article  Google Scholar 

  4. S.B. Gupta, B.P. Bihari, M.S. Biruduganti, R.R. Sekar, J. Zigan, Proc. Combust. Inst. 33, 3131 (2011)

    Article  Google Scholar 

  5. V.N. Nori, J.M. Seitzman, AIAA Paper 2007-0466 (2007)

  6. V.N. Nori, J.M. Seitzman, AIAA Paper 2008-953 (2008)

  7. M. Slack, A. Grillo, Combust. Flame 59, 189 (1985)

    Article  Google Scholar 

  8. B.F. Myers, E.R. Bartle, J. Chem. Phys. 47, 1783 (1967)

    Article  ADS  Google Scholar 

  9. C.J. Malerich, J.H. Scanlon, Chem. Phys. 110, 303 (1986)

    Article  Google Scholar 

  10. C. Rond, A. Bultel, P. Boubert, B.G. Chèron, Chem. Phys. 354, 16 (2008)

    Article  ADS  Google Scholar 

  11. A. Vesel, M. Mozetic, A. Drenik, M. Balat-Pichelin, Chem. Phys. 382, 127 (2011)

    Article  ADS  Google Scholar 

  12. A.M. Pravilov, L.G. Smirnova, Kinet. Catal. 22, 832 (1981)

    Google Scholar 

  13. D.L. Baulch, D.D. Drysdale, J. Duxbury, S.J. Grant, Evaluated Kinetic Data for High Temperature Reactions, vol. 3 (1976)

  14. J.M. Samaniego, F.N. Egolfopoulos, C.T. Bowman, Combust. Sci. Technol. 109, 183 (1995)

    Article  Google Scholar 

  15. B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel, Fuel 80, 67 (2011)

    Article  Google Scholar 

  16. Y. Ikeda, J. Kojima, H. Hashimoto, T. Nakajima, AIAA paper 2002-0191 (2002)

  17. F.V. Tinaut, M. Reyes, B. Giménez, J.V. Pastor, Energy Fuels 25, 119 (2011)

    Article  Google Scholar 

  18. A.M. Dean, D.C. Steiner, E.E. Wang, Combust. Flame 32, 73 (1978)

    Article  Google Scholar 

  19. C.J. Aul, M.S. Thesis, Texas A&M University (2009)

  20. E.L. Petersen, M.J.A. Rickard, M.W. Crofton, E.D. Abbey, M.J. Traum, D.M. Kalitan, Meas. Sci. Technol. 16, 1716 (2005)

    Article  ADS  Google Scholar 

  21. A. Levacque, O. Mathieu, E.L. Petersen, in Spring Technical Meeting of the Western States Section of the Combustion Institute (2012)

  22. D. Healy, M.M. Kopp, N.L. Polley, E.L. Petersen, G. Bourque, H.J. Curran, Energy Fuels 24, 1617 (2010)

    Article  Google Scholar 

  23. D. Healy, H.J. Curran, N.S. Donato, C.J. Aul, E.L. Petersen, C.M. Zinner, G. Bourque, H.J. Curran, Combust. Flame 157, 1540 (2010)

    Article  Google Scholar 

  24. J.M. Hall, E.L. Petersen, AIAA paper 2004-4164 (2004)

  25. J.M. Hall, E.L. Petersen, Int. J. Chem. Kinet. 38, 714 (2006)

    Article  Google Scholar 

  26. H.P. Broida, A.G. Gaydon, Trans. Faraday Soc. 49, 1190 (1953)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by Alstom Power, Baden, Switzerland. Additional support came from the National Science Foundation under grant number EEC-1004859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Petersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopp, M., Brower, M., Mathieu, O. et al. \(\mathrm{CO}_{2}^{*}\) chemiluminescence study at low and elevated pressures. Appl. Phys. B 107, 529–538 (2012). https://doi.org/10.1007/s00340-012-5051-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5051-4

Keywords

Navigation