Skip to main content
Log in

Characterization of lineshape structure by wavelength modulation spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Wavelength Modulation Spectroscopy (WMS) is performed in the oxygen A-band at different harmonics for different modulation indices and optical pathlengths. The experimental data is compared to two models with different absorption profiles: one assuming a Lorentzian lineshape function and the other with a Voigt lineshape function. We show that the larger amount of structure in higher harmonic signals provides greater sensitivity to the type of lineshape profile utilized for modeling. A useful new feature explored in this work is optical path length saturation in WMS that was described for the first time in a recent paper from our group. We discuss the role of such saturation and how it can be utilized as a diagnostic to probe lineshape. We also address the effect of the ever present modulation broadening. Results of experiments in which sets of nine scans (direct absorption, 1f, 2f,…,8f; i.e., detection harmonic N=0,1,2,3,…,8) were made simultaneously are described and discussed. Finally, the role that increased structure plays—as a result of increasing order of detection, N, as well as from the modification of the signal profile with increasing optical thickness—is outlined from the perspective of classical information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)

    Article  ADS  Google Scholar 

  2. D.T. Cassidy, J. Reid, Appl. Opt. 21, 1185 (1982)

    Article  ADS  Google Scholar 

  3. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Article  ADS  Google Scholar 

  4. D.S. Bomse, A.C. Stanton, J.A. Silver, Appl. Opt. 31, 718 (1992)

    Article  ADS  Google Scholar 

  5. L. Ciaffoni, B.L. Cummings, W. Denzer, R. Peverall, S.R. Procter, G.A.D. Ritchie, Appl. Phys. B 92, 627 (2008)

    Article  ADS  Google Scholar 

  6. A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 96, 161 (2009)

    Article  ADS  Google Scholar 

  7. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 94, 51 (2009)

    Article  ADS  Google Scholar 

  8. S. Schilt, L. Thévenaz, P. Robert, Appl. Opt. 42, 6728 (2003)

    Article  ADS  Google Scholar 

  9. A.N. Dharamsi, J. Phys. D 29, 540 (1996)

    Article  ADS  Google Scholar 

  10. A.N. Dharamsi, Y. Lu, Appl. Phys. B 62, 273 (1996)

    Article  ADS  Google Scholar 

  11. A.N. Dharamsi, A.M. Bullock, Appl. Phys. B 63, 283 (1996)

    Article  ADS  Google Scholar 

  12. M.A. Khan, K. Mohan, A.N. Dharamsi, Appl. Phys. B 99, 363 (2010). doi:10.1007/s00340-009-3814-3

    Article  ADS  Google Scholar 

  13. A.M. Bullock, A.N. Dharamsi, W.P. Chu, L.R. Poole, Appl. Phys. Lett. 70, 1195 (1997)

    Article  ADS  Google Scholar 

  14. R.H. Dicke, Phys. Rev. 89, 472 (1953)

    Article  ADS  Google Scholar 

  15. K.J. Ritter, T.D. Wilkerson, J. Mol. Spectrosc. 121, 1 (1987)

    Article  ADS  Google Scholar 

  16. P. Kluczynski, J. Gustafsson, A.M. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001)

    Article  ADS  Google Scholar 

  17. G.V.H. Wilson, J. Appl. Phys. 34, 3276 (1963)

    Article  ADS  Google Scholar 

  18. L.S. Rothman, I.E. Gordon, A. Barbe, D. ChrisBenner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, S.N. Mikhailenko, C.E. Miller, N. Moazzen-Ahmadi, O.V. Naumenko, A.V. Nikitin, J. Orphal, V.I. Perevalov, A. Perrin, A. Predoi-Cross, C.P. Rinsland, M. Rotger, M. Šimecková, M.A. H Smith, K. Sung, S.A. Tashkun, J. Tennyson, R.A. Toth, A.C. Vandaele, J. VanderAuwera, J. Quant. Spectrosc. Radiat. Transfer 110, 533 (2008)

    Article  ADS  Google Scholar 

  19. J. Altman, R. Baumgart, C. Weitkamp, Appl. Opt. 20, 995 (1981)

    Article  ADS  Google Scholar 

  20. L.H. Aller, Atoms, Stars, and Nebulae, Revised edn. (Harvard University Press, Cambridge, 1971)

    Google Scholar 

  21. E.B. Jenkins, Phys. Scr. 2009, 014005 (2009). doi:10.1088/0031-8949/2009/T134/014005

    Article  Google Scholar 

  22. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    MathSciNet  MATH  Google Scholar 

  23. C.E. Shannon, Bell Syst. Tech. J. 27, 623 (1948)

    MathSciNet  Google Scholar 

  24. K.D. Mohan, M.A. Khan, A.N. Dharamsi, Proc. SPIE 7310 (2009). doi:10.1117/12.818574

  25. M.A. Khan, K.D. Mohan, A.N. Dharamsi, Proc. SPIE 7229 (2009). doi:10.1117/12.808525

  26. A. Einstein, Doc. 26, in The Collected Papers of Albert Einstein, Volume 6: The Berlin Years: Writings, 1914–1917 (English translation supplement). Translated by Alfred Engel, ed. by A.J. Kox, M.J. Klein, R. Schulmann (Princeton University Press, Princeton, 1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, K., Khan, M.A. & Dharamsi, A.N. Characterization of lineshape structure by wavelength modulation spectroscopy. Appl. Phys. B 102, 569–578 (2011). https://doi.org/10.1007/s00340-010-4248-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4248-7

Keywords

Navigation