Skip to main content
Log in

Optical pathlength saturation signatures in wavelength modulation spectroscopy signals of atmospheric molecular oxygen

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We discuss experimental and theoretical results of absorption features of the oxygen A-band transitions in the optically thick regime when synchronous detection at higher harmonics (N≥2), using wavelength modulation spectroscopy (WMS), is performed. We show that the absorption saturation effects demonstrate a distinctive feature which results in suppression of the line-center lobes of the harmonic signals. These effects depend on the optical pathlength as well as on the modulation index. The rich structure of WMS signals, especially at higher detection orders, is central to the technique’s advantages in resolving spectra congested with highly disparate oscillator-strength lines. The effect of pathlength saturation on this structure is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Dharamsi, J. Phys. D: Appl. Phys. 29, 540 (1996)

    Article  ADS  Google Scholar 

  2. A.N. Dharamsi, Y. Lu, Appl. Phys. B 62, 273 (1996)

    Article  ADS  Google Scholar 

  3. A.N. Dharamsi, A.M. Bullock, Appl. Phys. B 63, 283 (1996)

    Article  ADS  Google Scholar 

  4. M. Amir Khan, K.D. Mohan, A.N. Dharamsi, in IEEE Lasers and Electro-Optics Society, 21st Annual Meeting, pp. 9–13, 648–649 (2008)

  5. M. Amir Khan, K.D. Mohan, A.N. Dharamsi, Proc. SPIE 7229, 72290P (2009)

    Article  Google Scholar 

  6. L.H. Aller, Atoms, Stars, and Nebulae, 3rd edn. (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  7. M. Khan, K.D. Mohan, A.N. Dharamsi, in Proceedings, Vol. 6378, Chemical and Biological Sensors for Industrial and Environmental Monitoring II, SPIE Symposium on Optics East, pp. 1–4, 6378–47, October (2006)

  8. G.V.H. Wilson, J. Appl. Phys. 34, 3276 (1963)

    Article  ADS  Google Scholar 

  9. A.M. Bullock, A.N. Dharamsi, J. Appl. Phys. 84, 6929 (1998)

    Article  ADS  Google Scholar 

  10. J. Altman, R. Baumgart, C. Weitkamp, Appl. Opt. 20, 995 (1981)

    Article  ADS  Google Scholar 

  11. A. Rothman, A. Barbe, D.C. Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, J. Quant. Spectrosc. Radiat. Transfer 82, 5 (2003). The 2008 HITRAN Database lists a value of 13151.34866 cm−1 for the RR (13, 13) line. The results obtained in this paper (using the value of 13151.34015 cm−1) are not affected since the wavelength scales in the figures are with respect to the center of this line itself

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Dharamsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amir Khan, M., Mohan, K. & Dharamsi, A.N. Optical pathlength saturation signatures in wavelength modulation spectroscopy signals of atmospheric molecular oxygen. Appl. Phys. B 99, 363–369 (2010). https://doi.org/10.1007/s00340-009-3814-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-009-3814-3

PACS

Navigation