Skip to main content
Log in

Hydroxyl space-time correlation measurements in partially premixed turbulent opposed-jet flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A high repetition-rate, two-point, time-resolved, laser-induced fluorescence technique is used to perform simultaneous two-point OH time-series measurements in a series of turbulent opposed-jet partially premixed flames with varying fuel-side equivalence ratio and bulk Reynolds number. Time scales of OH in these flames have previously been reported; however, the extension to two-point detection permits measurements of new spatial and temporal statistics previously unavailable in such flames. In particular, the simultaneous OH time series are used here to compute spatial and temporal autocorrelation functions. Filtered OH length scales (lr,OH), corresponding to radial OH fluctuations in turbulent stagnation flames, are obtained from the spatial autocorrelation function, including their variation across the stagnation plane. In general, maximum OH fluctuations occur at the stagnation plane, thus minimizing the OH integral length scale at the axial location of peak OH. For all flames of this study, trends in OH length scale follow those of axial time scale (τI,OH). For flames with constant Re, lr,OH decreases with less partial premixing. However, this change in integral length scale appears to be more significant for flames at lower Re in comparison to those at higher Re. Similar to OH integral time scales, for flames with the same fuel composition, lr,OH decreases with increasing Re. Moreover, fuel-lean mixtures appear to be more sensitive to Re variations as compared to fuel-rich mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Cho, C.K. Law, R.K. Cheng, I.G. Shepherd, Proc. Combust. Inst. 22, 739 (1988)

    Google Scholar 

  2. R.K. Cheng, I.G. Shepherd, I. Gökalp, Combust. Flame 78, 205 (1989)

    Article  Google Scholar 

  3. M.W. Renfro, A. Chaturvedy, G.B. King, N.M. Laurendeau, A. Kempf, A. Dreizler, J. Janicka, Combust. Flame 139, 142 (2004)

    Article  Google Scholar 

  4. B. Böhm, D. Geyer, A. Dreizler, K.K. Venkatesan, N.M. Laurendeau, M.W. Renfro, Proc. Combust. Inst. 31, 709 (2007)

    Article  Google Scholar 

  5. D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Proc. Combust. Inst. 30, 681 (2005)

    Article  Google Scholar 

  6. D. Geyer, A. Dreizler, J. Janicka, A.D. Permana, J.Y. Chen, Proc. Combust. Inst. 30, 711 (2005)

    Article  Google Scholar 

  7. D. Geyer, A. Kempf, A. Dreizler, J. Janicka, Combust. Flame 143, 524 (2005)

    Article  Google Scholar 

  8. S.K. Omar, D. Geyer, A. Dreizler, J. Janicka, Prog. Comput. Fluid. Dynam. 4, 241 (2004)

    Article  Google Scholar 

  9. R.P. Lindstedt, D. Luff, J.H. Whitelaw, Flow Turbul. Combust. 74, 169 (2005)

    Article  Google Scholar 

  10. A. Kitajima, T. Ueda, A. Matsuo, M. Mizomoto, Combust. Flame 121, 301 (2000)

    Article  Google Scholar 

  11. E. Mastorakos, A.M.K.P. Taylor, J.H. Whitelaw, Combust. Flame 91, 40 (1992)

    Article  Google Scholar 

  12. E. Mastorakos, A.M.K.P. Taylor, J.H. Whitelaw, Combust. Flame 91, 55 (1992)

    Article  Google Scholar 

  13. R.S. Barlow, A.N. Karpetis, Proc. Combust. Inst. 30, 673 (2004)

    Article  Google Scholar 

  14. J.H. Frank, S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 29, 2687 (2002)

    Article  Google Scholar 

  15. S.H. Stârner, R.W. Bilger, R.W. Dibble, R.S. Barlow, Combust. Sci. Technol. 86, 223 (1992)

    Article  Google Scholar 

  16. L.W. Kostiuk, K.N.C. Bray, R.K. Cheng, Combust. Flame 92, 377 (1993)

    Article  Google Scholar 

  17. C. Ghenai, I. Gokalp, Exp. Fluids 24, 347 (1998)

    Article  Google Scholar 

  18. J. Kojima, Y. Ikeda, T. Nakajima, Meas. Sci. Technol. 14, 1714 (2003)

    Article  ADS  Google Scholar 

  19. C.J. Dasch, Appl. Opt. 31, 1146 (1992)

    Article  ADS  Google Scholar 

  20. K.T. Walsh, M.B. Long, M.A. Tanoff, M.D. Smooke, Proc. Combust. Inst. 27, 615 (1998)

    Google Scholar 

  21. A.J. Marchese, F.L. Dryer, M. Vedha-Nayagam, R. Colantonio, Proc. Combust. Inst. 26, 1219 (1996)

    Google Scholar 

  22. B. Renou, A. Boukhalfa, D. Puechberty, M. Trinité, Combust. Flame 123, 507 (2000)

    Article  Google Scholar 

  23. C. F. Kaminski., J. Hult, M. Aldén, Appl. Phys. B 68, 757 (1999)

    Article  ADS  Google Scholar 

  24. A. Dreizler, S. Lindenmaier, U. Maas, J. Hult, M. Aldén, C.F. Kaminski, Appl. Phys. B 70, 287 (2000)

    Article  ADS  Google Scholar 

  25. G.H. Wang, N.T. Clemens, P.L. Varghese, Proc. Combust. Inst. 30, 691 (2005)

    Article  Google Scholar 

  26. M.W. Renfro, J.P. Gore, N.M. Laurendeau, Combust. Flame 129, 120 (2002)

    Article  Google Scholar 

  27. K.K. Venkatesan, N.M. Laurendeau, M.W. Renfro, D. Geyer, A. Dreizler, Flow Turbul. Combust. 76, 257 (2006)

    Article  Google Scholar 

  28. M.W. Renfro, W.A. Guttenfelder, G.B. King, N.M. Laurendeau, Combust. Flame 123, 389 (2000)

    Article  Google Scholar 

  29. J. Luque, D.R. Crosley: LIFBASE: Database and Spectral Simulation (version 2.0.2), SRI Int. Report MP 99-009 (1999)

  30. J. Zhang, K.K. Venkatesan, G.B. King, N.M. Laurendeau, M.W. Renfro, Opt. Lett. 30, 3144 (2005)

    Article  ADS  Google Scholar 

  31. R.E. Fischer, B. Tadic-Galeb, Optical System Design (McGraw-Hill, New York, 2000)

    Google Scholar 

  32. Software for Optical Design, ZEMAX Development Corporation, Bellevue, Washington (2004)

  33. J. Zhang, G.B. King, N.M. Laurendeau, M.W. Renfro, Appl. Opt. 46, 5742 (2007)

    Article  ADS  Google Scholar 

  34. S.D. Pack, M.W. Renfro, G.B. King, N.M. Laurendeau, Opt. Lett. 23, 1215 (1998)

    ADS  Google Scholar 

  35. M.W. Renfro, G.B. King, N.M. Laurendeau, Appl. Opt. 38, 4596 (1999)

    Article  ADS  Google Scholar 

  36. B. Efron, R.J. Tibshirani, An Introduction to The Bootstrap (Chapman and Hall, London, 1993)

    MATH  Google Scholar 

  37. M.W. Renfro, S.D. Pack, G.B. King, N.M. Laurendeau, Appl. Phys. B 69, 137 (1999)

    Article  ADS  Google Scholar 

  38. J. Mi, R.A. Antonia, Phys. Fluids A 6, 1548 (1994)

    Article  MATH  ADS  Google Scholar 

  39. W.J.A. Dahm, K.B. Southerland, Phys. Fluids A 9, 2101 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.K. Venkatesan.

Additional information

PACS

47.70.Pq; 32.50.+d; 47.27.wg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, K., Zhang, J., King, G. et al. Hydroxyl space-time correlation measurements in partially premixed turbulent opposed-jet flames. Appl. Phys. B 89, 129–140 (2007). https://doi.org/10.1007/s00340-007-2753-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2753-0

Keywords

Navigation